Photoelectrochemistry of core-shell tandem junction n-p+-Si/n- WO3 microwire array photoelectrodes

Matthew R. Shaner, Katherine T. Fountaine, Shane Ardo, Rob H. Coridan, Harry A. Atwater, Nathan S. Lewis

Research output: Contribution to journalArticlepeer-review

125 Citations (Scopus)


Tandem junction (n-p+-Si/ITO/WO3/liquid) core-shell microwire devices for solar-driven water splitting have been designed, fabricated and investigated photoelectrochemically. The tandem devices exhibited open-circuit potentials of Eoc = -1.21 V versus E 0′(O2/H2O), demonstrating additive voltages across the individual junctions (n-p+-Si Eoc = -0.5 V versus solution; WO3/liquid Eoc = -0.73 V versus E0′(O2/H2O)). Optical concentration (12×, AM1.5D) shifted the open-circuit potential to Eoc = -1.27 V versus E0′(O2/H2O) and resulted in unassisted H2 production during two-electrode measurements (anode: tandem device, cathode: Pt disc). The solar energy-conversion efficiencies were very low, 0.0068% and 0.0019% when the cathode compartment was saturated with Ar or H2, respectively, due to the non-optimal photovoltage and band-gap of the WO3 that was used in the demonstration system to obtain stability of all of the system components under common operating conditions while also insuring product separation for safety purposes.

Original languageEnglish
Pages (from-to)779-790
Number of pages12
JournalEnergy and Environmental Science
Issue number2
Publication statusPublished - Feb 2014

ASJC Scopus subject areas

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

Fingerprint Dive into the research topics of 'Photoelectrochemistry of core-shell tandem junction n-p<sup>+</sup>-Si/n- WO<sub>3</sub> microwire array photoelectrodes'. Together they form a unique fingerprint.

Cite this