Photoswitched singlet energy transfer in a porphyrin-spiropyran dyad

J. L. Bahr, G. Kodis, L. De la Garza, S. Lin, Ana L Moore, Thomas A Moore, John Devens Gust

Research output: Contribution to journalArticle

152 Citations (Scopus)

Abstract

A photochromic nitrospiropyran moiety (Sp) has been covalently linked to a zinc (PZn) and to a free-base (PH2) porphyrin. In the resulting dyads (PZn-Spc and PH2-Spc), the porphyrin first excited singlet states are unperturbed by the closed form of the attached spiropyran. Excitation of the spiropyran moiety of either dyad in the near-UV region results in ring opening to a merocyanine form (P-Spo) that absorbs at 600 nm. The open form re-closes thermally in 2-methyltetrahydrofuran with a time constant of 20 s, or following irradiation into the 600 nm band. Excitation of the zinc porphyrin moiety in the merocyanine form of the dyad yields 1PZn-Spo. The lifetime of the zinc porphyrin excited state is reduced from its usual value of 1.8 ns to 130 ps by singlet-singlet energy transfer to the merocyanine moiety to give PZn-1Spo. The quantum yield of energy transfer is 0.93. Quenching is also observed in the free base dyad, where 1PH2-Spo and PH2-1Spo exchange singlet excitation energy. This photoswitchable quenching phenomenon provides light-activated control of the porphyrin excited states, and consequently control of any subsequent energy or electron-transfer processes that might be initiated by these excited states in more complex molecular photonic or optoelectronic devices.

Original languageEnglish
Pages (from-to)7124-7133
Number of pages10
JournalJournal of the American Chemical Society
Volume123
Issue number29
DOIs
Publication statusPublished - 2001

    Fingerprint

ASJC Scopus subject areas

  • Chemistry(all)

Cite this