(POP)Rh pincer hydride complexes

Unusual reactivity and selectivity in oxidative addition and olefin insertion reactions

Michael C. Haibach, David Y. Wang, Thomas J. Emge, Karsten Krogh-Jespersen, Alan S Goldman

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

We report on the synthesis and reactivity of rhodium complexes featuring bulky, neutral pincer ligands with a "POP" coordinating motif, tBuxanPOP, iPrxanPOP, and tBufurPOP ( tBuxanPOP = 4,5-bis(di-tert-butylphosphino)-9,9-dimethyl-9H-xanthene; iPrxanPOP = 4,5-bis(diisopropylphosphino)-9,9-dimethyl-9H-xanthene; tBufurPOP = 2,5-bis((di-tert-butylphosphino)methyl)furan). The (POP)Rh complexes described in this work are, in general, more reactive than their (PNP)Rh and (PCP)Rh analogues, which allows for the generation of several new species under relatively mild conditions. Thus, monomeric (POP)RhCl complexes oxidatively add H2 to form (POP)Rh(H)2Cl, from which the coordinatively unsaturated hydride complexes (POP)Rh(H) 2 + and (tBuxanPOP)Rh(H) can be obtained. In the case of the new ligand tBufurPOP, a major kinetic product of the reaction with H2 is, surprisingly, the trans dihydride, i.e. trans-(tBufurPOP)Rh(H)2Cl; this is most likely attributable to reversible decoordination of one of the pincer coordinating groups, followed by addition of H2 to a highly reactive three-coordinate species. Ethylene is hydrogenated by (tBuxanPOP) Rh(H)2 + at 25 °C, but propylene is not, even at elevated temperatures. Ethylene undergoes insertion into the Rh-H bond of ( tBuxanPOP)RhH; this reaction is reversible, allowing for an experimental determination of the equilibrium constant for this hydrometalation. The less bulky iPrxanPOP ligand affords a dihydride complex which functions as a modestly active alkane dehydrogenation catalyst, the first such example for a cationic pincer complex of any metal.

Original languageEnglish
Pages (from-to)3683-3692
Number of pages10
JournalChemical Science
Volume4
Issue number9
DOIs
Publication statusPublished - Sep 2013

Fingerprint

Alkenes
Xanthenes
Hydrides
Ligands
Hydrogen
Rhodium
Alkanes
Equilibrium constants
Dehydrogenation
Metals
Catalysts
Kinetics
Temperature
ethylene

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

(POP)Rh pincer hydride complexes : Unusual reactivity and selectivity in oxidative addition and olefin insertion reactions. / Haibach, Michael C.; Wang, David Y.; Emge, Thomas J.; Krogh-Jespersen, Karsten; Goldman, Alan S.

In: Chemical Science, Vol. 4, No. 9, 09.2013, p. 3683-3692.

Research output: Contribution to journalArticle

Haibach, Michael C. ; Wang, David Y. ; Emge, Thomas J. ; Krogh-Jespersen, Karsten ; Goldman, Alan S. / (POP)Rh pincer hydride complexes : Unusual reactivity and selectivity in oxidative addition and olefin insertion reactions. In: Chemical Science. 2013 ; Vol. 4, No. 9. pp. 3683-3692.
@article{be06bc79f1e3490bb7170c2d002b76c7,
title = "(POP)Rh pincer hydride complexes: Unusual reactivity and selectivity in oxidative addition and olefin insertion reactions",
abstract = "We report on the synthesis and reactivity of rhodium complexes featuring bulky, neutral pincer ligands with a {"}POP{"} coordinating motif, tBuxanPOP, iPrxanPOP, and tBufurPOP ( tBuxanPOP = 4,5-bis(di-tert-butylphosphino)-9,9-dimethyl-9H-xanthene; iPrxanPOP = 4,5-bis(diisopropylphosphino)-9,9-dimethyl-9H-xanthene; tBufurPOP = 2,5-bis((di-tert-butylphosphino)methyl)furan). The (POP)Rh complexes described in this work are, in general, more reactive than their (PNP)Rh and (PCP)Rh analogues, which allows for the generation of several new species under relatively mild conditions. Thus, monomeric (POP)RhCl complexes oxidatively add H2 to form (POP)Rh(H)2Cl, from which the coordinatively unsaturated hydride complexes (POP)Rh(H) 2 + and (tBuxanPOP)Rh(H) can be obtained. In the case of the new ligand tBufurPOP, a major kinetic product of the reaction with H2 is, surprisingly, the trans dihydride, i.e. trans-(tBufurPOP)Rh(H)2Cl; this is most likely attributable to reversible decoordination of one of the pincer coordinating groups, followed by addition of H2 to a highly reactive three-coordinate species. Ethylene is hydrogenated by (tBuxanPOP) Rh(H)2 + at 25 °C, but propylene is not, even at elevated temperatures. Ethylene undergoes insertion into the Rh-H bond of ( tBuxanPOP)RhH; this reaction is reversible, allowing for an experimental determination of the equilibrium constant for this hydrometalation. The less bulky iPrxanPOP ligand affords a dihydride complex which functions as a modestly active alkane dehydrogenation catalyst, the first such example for a cationic pincer complex of any metal.",
author = "Haibach, {Michael C.} and Wang, {David Y.} and Emge, {Thomas J.} and Karsten Krogh-Jespersen and Goldman, {Alan S}",
year = "2013",
month = "9",
doi = "10.1039/c3sc50380a",
language = "English",
volume = "4",
pages = "3683--3692",
journal = "Chemical Science",
issn = "2041-6520",
publisher = "Royal Society of Chemistry",
number = "9",

}

TY - JOUR

T1 - (POP)Rh pincer hydride complexes

T2 - Unusual reactivity and selectivity in oxidative addition and olefin insertion reactions

AU - Haibach, Michael C.

AU - Wang, David Y.

AU - Emge, Thomas J.

AU - Krogh-Jespersen, Karsten

AU - Goldman, Alan S

PY - 2013/9

Y1 - 2013/9

N2 - We report on the synthesis and reactivity of rhodium complexes featuring bulky, neutral pincer ligands with a "POP" coordinating motif, tBuxanPOP, iPrxanPOP, and tBufurPOP ( tBuxanPOP = 4,5-bis(di-tert-butylphosphino)-9,9-dimethyl-9H-xanthene; iPrxanPOP = 4,5-bis(diisopropylphosphino)-9,9-dimethyl-9H-xanthene; tBufurPOP = 2,5-bis((di-tert-butylphosphino)methyl)furan). The (POP)Rh complexes described in this work are, in general, more reactive than their (PNP)Rh and (PCP)Rh analogues, which allows for the generation of several new species under relatively mild conditions. Thus, monomeric (POP)RhCl complexes oxidatively add H2 to form (POP)Rh(H)2Cl, from which the coordinatively unsaturated hydride complexes (POP)Rh(H) 2 + and (tBuxanPOP)Rh(H) can be obtained. In the case of the new ligand tBufurPOP, a major kinetic product of the reaction with H2 is, surprisingly, the trans dihydride, i.e. trans-(tBufurPOP)Rh(H)2Cl; this is most likely attributable to reversible decoordination of one of the pincer coordinating groups, followed by addition of H2 to a highly reactive three-coordinate species. Ethylene is hydrogenated by (tBuxanPOP) Rh(H)2 + at 25 °C, but propylene is not, even at elevated temperatures. Ethylene undergoes insertion into the Rh-H bond of ( tBuxanPOP)RhH; this reaction is reversible, allowing for an experimental determination of the equilibrium constant for this hydrometalation. The less bulky iPrxanPOP ligand affords a dihydride complex which functions as a modestly active alkane dehydrogenation catalyst, the first such example for a cationic pincer complex of any metal.

AB - We report on the synthesis and reactivity of rhodium complexes featuring bulky, neutral pincer ligands with a "POP" coordinating motif, tBuxanPOP, iPrxanPOP, and tBufurPOP ( tBuxanPOP = 4,5-bis(di-tert-butylphosphino)-9,9-dimethyl-9H-xanthene; iPrxanPOP = 4,5-bis(diisopropylphosphino)-9,9-dimethyl-9H-xanthene; tBufurPOP = 2,5-bis((di-tert-butylphosphino)methyl)furan). The (POP)Rh complexes described in this work are, in general, more reactive than their (PNP)Rh and (PCP)Rh analogues, which allows for the generation of several new species under relatively mild conditions. Thus, monomeric (POP)RhCl complexes oxidatively add H2 to form (POP)Rh(H)2Cl, from which the coordinatively unsaturated hydride complexes (POP)Rh(H) 2 + and (tBuxanPOP)Rh(H) can be obtained. In the case of the new ligand tBufurPOP, a major kinetic product of the reaction with H2 is, surprisingly, the trans dihydride, i.e. trans-(tBufurPOP)Rh(H)2Cl; this is most likely attributable to reversible decoordination of one of the pincer coordinating groups, followed by addition of H2 to a highly reactive three-coordinate species. Ethylene is hydrogenated by (tBuxanPOP) Rh(H)2 + at 25 °C, but propylene is not, even at elevated temperatures. Ethylene undergoes insertion into the Rh-H bond of ( tBuxanPOP)RhH; this reaction is reversible, allowing for an experimental determination of the equilibrium constant for this hydrometalation. The less bulky iPrxanPOP ligand affords a dihydride complex which functions as a modestly active alkane dehydrogenation catalyst, the first such example for a cationic pincer complex of any metal.

UR - http://www.scopus.com/inward/record.url?scp=84886673836&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84886673836&partnerID=8YFLogxK

U2 - 10.1039/c3sc50380a

DO - 10.1039/c3sc50380a

M3 - Article

VL - 4

SP - 3683

EP - 3692

JO - Chemical Science

JF - Chemical Science

SN - 2041-6520

IS - 9

ER -