Potential energy surface and quasiclassical trajectory studies of the N(2D) + H2 reaction

Lisa A. Pederson, George C Schatz

Research output: Contribution to journalArticle

111 Citations (Scopus)

Abstract

We present a global potential energy surface for the 1 A″ state of NH2 based on application of the reproducing kernel Hilbert space interpolation method to high quality ab initio (multireference configuration interaction) results. Extensive quasiclassical trajectory calculations are performed on this surface to study the N(2D) + H2/D2 reaction dynamics. Comparison is made with calculations on the lower level [first order configuration interaction (FOCI)] surface of Kobayashi, Takayanagi, Yokoyama, Sato, and Tsunashima (KTYST). We find a saddle point energy of 2.3 (1.9) kcal/mol for the perpendicular approach for the second order configuration interaction (SOCI) (SOCI with Davidson correction) surfaces, and a collinear stationary point energy of 5.5 (4.6) kcal/mol. The ordering of these stationary points is reversed compared to the corresponding FOCI results, and the only true reaction path on our surface is perpendicular. The primary reaction mechanism is determined to be C2v insertion to produce short lived (100-300 fs) NH2 intermediates. Angular distributions are found to be primarily forward-backward symmetric, with a slight bias towards backward scattering at low energies. Decay of the NH2's occurs before energy is fully randomized, so the product vibrational distributions are a little hotter than statistical - with vibrational population ratios NH(v″=1)/NH(v″=0) = 0.8 and ND(v″=1)/ND(v″ = 0) = 0.9 (near threshold). These ratios, and other aspects of the vibrational product distributions are in excellent agreement with recent laser induced fluorescence studies.

Original languageEnglish
Pages (from-to)9091-9100
Number of pages10
JournalJournal of Chemical Physics
Volume110
Issue number18
Publication statusPublished - May 8 1999

Fingerprint

Potential energy surfaces
configuration interaction
potential energy
Trajectories
trajectories
Angular distribution
Hilbert spaces
energy
products
Interpolation
saddle points
Hilbert space
Fluorescence
laser induced fluorescence
interpolation
Scattering
insertion
angular distribution
Lasers
thresholds

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this

Potential energy surface and quasiclassical trajectory studies of the N(2D) + H2 reaction. / Pederson, Lisa A.; Schatz, George C.

In: Journal of Chemical Physics, Vol. 110, No. 18, 08.05.1999, p. 9091-9100.

Research output: Contribution to journalArticle

@article{f0edcc93a51641a08f323515f2c5a9ee,
title = "Potential energy surface and quasiclassical trajectory studies of the N(2D) + H2 reaction",
abstract = "We present a global potential energy surface for the 1 A″ state of NH2 based on application of the reproducing kernel Hilbert space interpolation method to high quality ab initio (multireference configuration interaction) results. Extensive quasiclassical trajectory calculations are performed on this surface to study the N(2D) + H2/D2 reaction dynamics. Comparison is made with calculations on the lower level [first order configuration interaction (FOCI)] surface of Kobayashi, Takayanagi, Yokoyama, Sato, and Tsunashima (KTYST). We find a saddle point energy of 2.3 (1.9) kcal/mol for the perpendicular approach for the second order configuration interaction (SOCI) (SOCI with Davidson correction) surfaces, and a collinear stationary point energy of 5.5 (4.6) kcal/mol. The ordering of these stationary points is reversed compared to the corresponding FOCI results, and the only true reaction path on our surface is perpendicular. The primary reaction mechanism is determined to be C2v insertion to produce short lived (100-300 fs) NH2 intermediates. Angular distributions are found to be primarily forward-backward symmetric, with a slight bias towards backward scattering at low energies. Decay of the NH2's occurs before energy is fully randomized, so the product vibrational distributions are a little hotter than statistical - with vibrational population ratios NH(v″=1)/NH(v″=0) = 0.8 and ND(v″=1)/ND(v″ = 0) = 0.9 (near threshold). These ratios, and other aspects of the vibrational product distributions are in excellent agreement with recent laser induced fluorescence studies.",
author = "Pederson, {Lisa A.} and Schatz, {George C}",
year = "1999",
month = "5",
day = "8",
language = "English",
volume = "110",
pages = "9091--9100",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "18",

}

TY - JOUR

T1 - Potential energy surface and quasiclassical trajectory studies of the N(2D) + H2 reaction

AU - Pederson, Lisa A.

AU - Schatz, George C

PY - 1999/5/8

Y1 - 1999/5/8

N2 - We present a global potential energy surface for the 1 A″ state of NH2 based on application of the reproducing kernel Hilbert space interpolation method to high quality ab initio (multireference configuration interaction) results. Extensive quasiclassical trajectory calculations are performed on this surface to study the N(2D) + H2/D2 reaction dynamics. Comparison is made with calculations on the lower level [first order configuration interaction (FOCI)] surface of Kobayashi, Takayanagi, Yokoyama, Sato, and Tsunashima (KTYST). We find a saddle point energy of 2.3 (1.9) kcal/mol for the perpendicular approach for the second order configuration interaction (SOCI) (SOCI with Davidson correction) surfaces, and a collinear stationary point energy of 5.5 (4.6) kcal/mol. The ordering of these stationary points is reversed compared to the corresponding FOCI results, and the only true reaction path on our surface is perpendicular. The primary reaction mechanism is determined to be C2v insertion to produce short lived (100-300 fs) NH2 intermediates. Angular distributions are found to be primarily forward-backward symmetric, with a slight bias towards backward scattering at low energies. Decay of the NH2's occurs before energy is fully randomized, so the product vibrational distributions are a little hotter than statistical - with vibrational population ratios NH(v″=1)/NH(v″=0) = 0.8 and ND(v″=1)/ND(v″ = 0) = 0.9 (near threshold). These ratios, and other aspects of the vibrational product distributions are in excellent agreement with recent laser induced fluorescence studies.

AB - We present a global potential energy surface for the 1 A″ state of NH2 based on application of the reproducing kernel Hilbert space interpolation method to high quality ab initio (multireference configuration interaction) results. Extensive quasiclassical trajectory calculations are performed on this surface to study the N(2D) + H2/D2 reaction dynamics. Comparison is made with calculations on the lower level [first order configuration interaction (FOCI)] surface of Kobayashi, Takayanagi, Yokoyama, Sato, and Tsunashima (KTYST). We find a saddle point energy of 2.3 (1.9) kcal/mol for the perpendicular approach for the second order configuration interaction (SOCI) (SOCI with Davidson correction) surfaces, and a collinear stationary point energy of 5.5 (4.6) kcal/mol. The ordering of these stationary points is reversed compared to the corresponding FOCI results, and the only true reaction path on our surface is perpendicular. The primary reaction mechanism is determined to be C2v insertion to produce short lived (100-300 fs) NH2 intermediates. Angular distributions are found to be primarily forward-backward symmetric, with a slight bias towards backward scattering at low energies. Decay of the NH2's occurs before energy is fully randomized, so the product vibrational distributions are a little hotter than statistical - with vibrational population ratios NH(v″=1)/NH(v″=0) = 0.8 and ND(v″=1)/ND(v″ = 0) = 0.9 (near threshold). These ratios, and other aspects of the vibrational product distributions are in excellent agreement with recent laser induced fluorescence studies.

UR - http://www.scopus.com/inward/record.url?scp=0001217993&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001217993&partnerID=8YFLogxK

M3 - Article

VL - 110

SP - 9091

EP - 9100

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 18

ER -