Protein Scaffold Activates Catalytic CO 2 Hydrogenation by a Rhodium Bis(diphosphine) Complex

Joseph A. Laureanti, Garry W. Buchko, Sriram Katipamula, Qiwen Su, John C. Linehan, Oleg A. Zadvornyy, John W. Peters, Molly O'Hagan

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


The utilization of CO 2 to generate chemical fuels, such as formic acid, is a potentially beneficial route to balance carbon emissions and reduce dependence on fossil fuels. The development of efficient catalysts for CO 2 hydrogenation is needed to implement this fuel generation. In the molecular catalyst design presented here, we covalently attached a rhodium complex, ([Rh I (PN gly P) 2 ] - , where PN gly P is defined as P Et 2 -CH 2 -N (CH 2 CO 2 - ) -CH 2 -P Et 2 ) to a protein scaffold, (lactococcal multidrug resistant regulator from Lactococcus lactis) to use the protein environment around the metal center to control substrate delivery and therefore enable and improve catalytic activity. The reactivities of the rhodium complex and the synthetic metalloenzyme were characterized by high-pressure operando NMR techniques. In solution, the rhodium complex alone is not a catalyst for CO 2 hydrogenation. Incorporation of the rhodium complex into the protein scaffold resulted in a gain of function, turning on CO 2 hydrogenation activity. The metalloenzyme displayed a turnover frequency of 0.38 ± 0.03 h -1 at 58 atm and 298 K and achieved an average turnover number of 14 ± 3. Proposed catalytic intermediates generated and characterized suggest that the protein scaffold enables catalysis by facilitating the interaction between CO 2 and the hydride donor intermediate.

Original languageEnglish
Pages (from-to)620-625
Number of pages6
JournalACS Catalysis
Issue number1
Publication statusPublished - Jan 4 2019

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)

Fingerprint Dive into the research topics of 'Protein Scaffold Activates Catalytic CO <sub>2</sub> Hydrogenation by a Rhodium Bis(diphosphine) Complex'. Together they form a unique fingerprint.

Cite this