Proton-coupled electron transfer of tyrosines in Photosystem II and model systems for artificial photosynthesis: The role of a redox-active link between catalyst and photosensitizer

Leif Hammarström, Stenbjörn Styring

Research output: Contribution to journalReview article

104 Citations (Scopus)


Water oxidation in Photosystem II is dependent on a particular amino acid residue, TyrosineZ. This is a redox intermediate in steady state oxygen evolution and transfers electrons from the water splitting CaMn 4 cluster to the central chlorophyll radical P680 +. This Perspective discusses the functional principles of TyrosineZ as a proton-coupled redox active link, as well as mechanistic studies of synthetic model systems and implications for artificial photosynthesis. Experimental studies of temperature dependence and kinetic isotope effects are important tools to understand these reactions. We emphasize the importance of proton transfer distance and hydrogen bond dynamics that are responsible for variation in the rate of PCET by several orders of magnitude. The mechanistic principles discussed and their functional significance are not limited to tyrosine and biological systems, but are important to take into account when constructing artificial photosynthetic systems. Of particular importance is the role of proton transfer management in water splitting and solar fuel catalysis.

Original languageEnglish
Pages (from-to)2379-2388
Number of pages10
JournalEnergy and Environmental Science
Issue number7
Publication statusPublished - Jul 1 2011


ASJC Scopus subject areas

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

Cite this