Protonation of phosphovanadomolybdates H3+ xPV xMo12- xO40

Computational insight into reactivity

Irena Efremenko, Ronny Neumann

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Protonated phosphovanadomolybdates of the Keggin structure, H 3+xPVxMo12-xO40 where x = 0, 1, 2, and derivatives with surface defects formed by loss of constitutional water were studied using high-level DFT calculations toward determination of the most stable species and possible active forms in oxidation catalysis in both the gas phase and in polar solutions. The calculations demonstrate that protonation at bridging positions is energetically much more favorable than protonation of terminal oxygen atoms. The preferential protonation site is determined by the stability of the metal-oxygen bond rather than the negative charge on the oxygen atom. In H3PMo12O40, maximum distances between protons at bridging oxygen atoms are energetically favored. In contrast, for H4PVMo11O40 and H5PV 2Mo10O40 protons prefer nucleophilic sites adjacent to vanadium atoms. Up to three protons are bound to the nucleophilic sites around the same vanadium atom in the stable isomeric forms of H 5PV2Mo10O40 that result in strong destabilization of oxo-vanadium(V) bonding to the Keggin unit. Such behavior arises from the different nature of the Mo-O and V-O bonds that can be traced to the different sizes of the valence d orbitals of the metals. Coordination of two protons at the same site yields water and an oxygen defect as a result of its dissociation. The energetic cost for the formation of surface defects decreases in the order: Ot ≫ Oc ≲ Oe and is lower for the sites adjacent to vanadium atoms. Vanadium atoms near defects also have a significant contribution to the LUMO. Thus, vanadium-substituted polyoxometalates with defects near and, especially, between vanadium atoms present a plausible active form of polyoxometalates in oxidation reactions.

Original languageEnglish
Pages (from-to)4811-4826
Number of pages16
JournalJournal of Physical Chemistry A
Volume115
Issue number18
DOIs
Publication statusPublished - May 12 2011

Fingerprint

Protonation
Vanadium
vanadium
reactivity
Atoms
Protons
Oxygen
oxygen atoms
protons
atoms
surface defects
Surface defects
defects
Defects
Metals
oxidation
Oxidation
destabilization
oxygen
Water

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Cite this

Protonation of phosphovanadomolybdates H3+ xPV xMo12- xO40 : Computational insight into reactivity. / Efremenko, Irena; Neumann, Ronny.

In: Journal of Physical Chemistry A, Vol. 115, No. 18, 12.05.2011, p. 4811-4826.

Research output: Contribution to journalArticle

@article{1b66dfadee134e27989b6788cec4e704,
title = "Protonation of phosphovanadomolybdates H3+ xPV xMo12- xO40: Computational insight into reactivity",
abstract = "Protonated phosphovanadomolybdates of the Keggin structure, H 3+xPVxMo12-xO40 where x = 0, 1, 2, and derivatives with surface defects formed by loss of constitutional water were studied using high-level DFT calculations toward determination of the most stable species and possible active forms in oxidation catalysis in both the gas phase and in polar solutions. The calculations demonstrate that protonation at bridging positions is energetically much more favorable than protonation of terminal oxygen atoms. The preferential protonation site is determined by the stability of the metal-oxygen bond rather than the negative charge on the oxygen atom. In H3PMo12O40, maximum distances between protons at bridging oxygen atoms are energetically favored. In contrast, for H4PVMo11O40 and H5PV 2Mo10O40 protons prefer nucleophilic sites adjacent to vanadium atoms. Up to three protons are bound to the nucleophilic sites around the same vanadium atom in the stable isomeric forms of H 5PV2Mo10O40 that result in strong destabilization of oxo-vanadium(V) bonding to the Keggin unit. Such behavior arises from the different nature of the Mo-O and V-O bonds that can be traced to the different sizes of the valence d orbitals of the metals. Coordination of two protons at the same site yields water and an oxygen defect as a result of its dissociation. The energetic cost for the formation of surface defects decreases in the order: Ot ≫ Oc ≲ Oe and is lower for the sites adjacent to vanadium atoms. Vanadium atoms near defects also have a significant contribution to the LUMO. Thus, vanadium-substituted polyoxometalates with defects near and, especially, between vanadium atoms present a plausible active form of polyoxometalates in oxidation reactions.",
author = "Irena Efremenko and Ronny Neumann",
year = "2011",
month = "5",
day = "12",
doi = "10.1021/jp201420z",
language = "English",
volume = "115",
pages = "4811--4826",
journal = "Journal of Physical Chemistry A",
issn = "1089-5639",
publisher = "American Chemical Society",
number = "18",

}

TY - JOUR

T1 - Protonation of phosphovanadomolybdates H3+ xPV xMo12- xO40

T2 - Computational insight into reactivity

AU - Efremenko, Irena

AU - Neumann, Ronny

PY - 2011/5/12

Y1 - 2011/5/12

N2 - Protonated phosphovanadomolybdates of the Keggin structure, H 3+xPVxMo12-xO40 where x = 0, 1, 2, and derivatives with surface defects formed by loss of constitutional water were studied using high-level DFT calculations toward determination of the most stable species and possible active forms in oxidation catalysis in both the gas phase and in polar solutions. The calculations demonstrate that protonation at bridging positions is energetically much more favorable than protonation of terminal oxygen atoms. The preferential protonation site is determined by the stability of the metal-oxygen bond rather than the negative charge on the oxygen atom. In H3PMo12O40, maximum distances between protons at bridging oxygen atoms are energetically favored. In contrast, for H4PVMo11O40 and H5PV 2Mo10O40 protons prefer nucleophilic sites adjacent to vanadium atoms. Up to three protons are bound to the nucleophilic sites around the same vanadium atom in the stable isomeric forms of H 5PV2Mo10O40 that result in strong destabilization of oxo-vanadium(V) bonding to the Keggin unit. Such behavior arises from the different nature of the Mo-O and V-O bonds that can be traced to the different sizes of the valence d orbitals of the metals. Coordination of two protons at the same site yields water and an oxygen defect as a result of its dissociation. The energetic cost for the formation of surface defects decreases in the order: Ot ≫ Oc ≲ Oe and is lower for the sites adjacent to vanadium atoms. Vanadium atoms near defects also have a significant contribution to the LUMO. Thus, vanadium-substituted polyoxometalates with defects near and, especially, between vanadium atoms present a plausible active form of polyoxometalates in oxidation reactions.

AB - Protonated phosphovanadomolybdates of the Keggin structure, H 3+xPVxMo12-xO40 where x = 0, 1, 2, and derivatives with surface defects formed by loss of constitutional water were studied using high-level DFT calculations toward determination of the most stable species and possible active forms in oxidation catalysis in both the gas phase and in polar solutions. The calculations demonstrate that protonation at bridging positions is energetically much more favorable than protonation of terminal oxygen atoms. The preferential protonation site is determined by the stability of the metal-oxygen bond rather than the negative charge on the oxygen atom. In H3PMo12O40, maximum distances between protons at bridging oxygen atoms are energetically favored. In contrast, for H4PVMo11O40 and H5PV 2Mo10O40 protons prefer nucleophilic sites adjacent to vanadium atoms. Up to three protons are bound to the nucleophilic sites around the same vanadium atom in the stable isomeric forms of H 5PV2Mo10O40 that result in strong destabilization of oxo-vanadium(V) bonding to the Keggin unit. Such behavior arises from the different nature of the Mo-O and V-O bonds that can be traced to the different sizes of the valence d orbitals of the metals. Coordination of two protons at the same site yields water and an oxygen defect as a result of its dissociation. The energetic cost for the formation of surface defects decreases in the order: Ot ≫ Oc ≲ Oe and is lower for the sites adjacent to vanadium atoms. Vanadium atoms near defects also have a significant contribution to the LUMO. Thus, vanadium-substituted polyoxometalates with defects near and, especially, between vanadium atoms present a plausible active form of polyoxometalates in oxidation reactions.

UR - http://www.scopus.com/inward/record.url?scp=79955856367&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79955856367&partnerID=8YFLogxK

U2 - 10.1021/jp201420z

DO - 10.1021/jp201420z

M3 - Article

VL - 115

SP - 4811

EP - 4826

JO - Journal of Physical Chemistry A

JF - Journal of Physical Chemistry A

SN - 1089-5639

IS - 18

ER -