Quantitative analysis of strain relaxation in GexSi 1-x/Si(110) heterostructures and an accurate determination of stacking fault energy in GexSi1-x alloys

R. Hull, J. C. Bean, L. J. Peticolas, D. Bahnck, B. E. Weir, Leonard C Feldman

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

We report a quantitative theoretical and experimental analysis of strain relaxation in GexSi1-x/Si(110) heterostructures. It is shown that above a critical composition, the critical thickness for edge a/6〈112〉 Shockley partial dislocations is less than that for 60°a/2〈110〉 total dislocations. The net (excess) stress is greater on the edge a/6〈112〉 dislocations for epilayer thicknesses, hx, but greater on the 60°a/2〈110〉 dislocations for h≳hx. The sensitive calculated dependence of hx upon the stacking fault energy per unit area γ allows an experimental determination of γ=65±10 mJ m-2 for x∼0.3 in Ge xSi1-x.

Original languageEnglish
Pages (from-to)2802-2804
Number of pages3
JournalApplied Physics Letters
Volume61
Issue number23
DOIs
Publication statusPublished - 1992

Fingerprint

stacking fault energy
quantitative analysis

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this

Quantitative analysis of strain relaxation in GexSi 1-x/Si(110) heterostructures and an accurate determination of stacking fault energy in GexSi1-x alloys. / Hull, R.; Bean, J. C.; Peticolas, L. J.; Bahnck, D.; Weir, B. E.; Feldman, Leonard C.

In: Applied Physics Letters, Vol. 61, No. 23, 1992, p. 2802-2804.

Research output: Contribution to journalArticle

@article{5637d2552e9a42c09a593fd4d65fc293,
title = "Quantitative analysis of strain relaxation in GexSi 1-x/Si(110) heterostructures and an accurate determination of stacking fault energy in GexSi1-x alloys",
abstract = "We report a quantitative theoretical and experimental analysis of strain relaxation in GexSi1-x/Si(110) heterostructures. It is shown that above a critical composition, the critical thickness for edge a/6〈112〉 Shockley partial dislocations is less than that for 60°a/2〈110〉 total dislocations. The net (excess) stress is greater on the edge a/6〈112〉 dislocations for epilayer thicknesses, hx, but greater on the 60°a/2〈110〉 dislocations for h≳hx. The sensitive calculated dependence of hx upon the stacking fault energy per unit area γ allows an experimental determination of γ=65±10 mJ m-2 for x∼0.3 in Ge xSi1-x.",
author = "R. Hull and Bean, {J. C.} and Peticolas, {L. J.} and D. Bahnck and Weir, {B. E.} and Feldman, {Leonard C}",
year = "1992",
doi = "10.1063/1.108068",
language = "English",
volume = "61",
pages = "2802--2804",
journal = "Applied Physics Letters",
issn = "0003-6951",
publisher = "American Institute of Physics Publising LLC",
number = "23",

}

TY - JOUR

T1 - Quantitative analysis of strain relaxation in GexSi 1-x/Si(110) heterostructures and an accurate determination of stacking fault energy in GexSi1-x alloys

AU - Hull, R.

AU - Bean, J. C.

AU - Peticolas, L. J.

AU - Bahnck, D.

AU - Weir, B. E.

AU - Feldman, Leonard C

PY - 1992

Y1 - 1992

N2 - We report a quantitative theoretical and experimental analysis of strain relaxation in GexSi1-x/Si(110) heterostructures. It is shown that above a critical composition, the critical thickness for edge a/6〈112〉 Shockley partial dislocations is less than that for 60°a/2〈110〉 total dislocations. The net (excess) stress is greater on the edge a/6〈112〉 dislocations for epilayer thicknesses, hx, but greater on the 60°a/2〈110〉 dislocations for h≳hx. The sensitive calculated dependence of hx upon the stacking fault energy per unit area γ allows an experimental determination of γ=65±10 mJ m-2 for x∼0.3 in Ge xSi1-x.

AB - We report a quantitative theoretical and experimental analysis of strain relaxation in GexSi1-x/Si(110) heterostructures. It is shown that above a critical composition, the critical thickness for edge a/6〈112〉 Shockley partial dislocations is less than that for 60°a/2〈110〉 total dislocations. The net (excess) stress is greater on the edge a/6〈112〉 dislocations for epilayer thicknesses, hx, but greater on the 60°a/2〈110〉 dislocations for h≳hx. The sensitive calculated dependence of hx upon the stacking fault energy per unit area γ allows an experimental determination of γ=65±10 mJ m-2 for x∼0.3 in Ge xSi1-x.

UR - http://www.scopus.com/inward/record.url?scp=36449002245&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36449002245&partnerID=8YFLogxK

U2 - 10.1063/1.108068

DO - 10.1063/1.108068

M3 - Article

AN - SCOPUS:36449002245

VL - 61

SP - 2802

EP - 2804

JO - Applied Physics Letters

JF - Applied Physics Letters

SN - 0003-6951

IS - 23

ER -