Abstract
The major obstacle to the description of systems containing a large number of degrees of freedom is the exponential increase of computational time and effort with dimensionality. A strategy is presented to overcome this obstacle as well as the shortcoming of the omission of correlations, while still maintaining the simplicity and strengths of a mean-field description, based upon identifying the crucial dynamical correlations and incorporating them with multiconfigurations. The collinear reactive scattering of H + H2 illustrates the techniques involved and their adaptability, flexibility, and breadth of applicability. MCTDSCF simulations, constructed from time-dependent variational principles, are compared with the numerically exact solution of the Schrödinger equation; agreement is found.
Original language | English |
---|---|
Pages (from-to) | 97-108 |
Number of pages | 12 |
Journal | Chemical Physics Letters |
Volume | 171 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - Jul 27 1990 |
ASJC Scopus subject areas
- Physical and Theoretical Chemistry
- Spectroscopy
- Condensed Matter Physics
- Atomic and Molecular Physics, and Optics
- Surfaces and Interfaces