Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy

David Grills, Sergei V. Lymar

Research output: Contribution to journalArticle

5 Citations (Scopus)


The solvated electron in CH3CN is scavenged by CO2 with a rate constant of 3.2 × 1010 M-1 s-1 to produce the carbon dioxide radical anion (CO2 -), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm-1 corresponding to the antisymmetric CO2 - stretch. This assignment is confirmed by 13C isotopic labelling experiments and DFT calculations. In neat CH3CN, CO2 - decays on a ∼10 μs time scale via recombination with solvent-derived radicals (R) and solvated protons. Upon addition of formate (HCO2 -), the radiation yield of CO2 - is substantially increased due to H-atom abstraction by R from HCO2 - (R + HCO2 - → RH + CO2 -), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN, CH3, and possibly, H primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH2CN. The removal of solvent radicals by HCO2 - also results in over a hundredfold increase in the CO2 - lifetime. CO2 - scavenging experiments suggest that at 50 mM HCO2 -, about 60% of the solvent-derived radicals are engaged in CO2 - generation. Even under CO2 saturation, no formation of the radical adduct, (CO2)2 -, could be detected on the microsecond time scale.

Original languageEnglish
Pages (from-to)10011-10017
Number of pages7
JournalPhysical Chemistry Chemical Physics
Issue number15
Publication statusPublished - Jan 1 2018

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy'. Together they form a unique fingerprint.

  • Cite this