Abstract
The oxidation of alkanes with molecular oxygen using aldehydes as reducing agents (aldehydes are cooxidized) was studied using the α-H5PV2Mo10O40 polyoxometalate as catalyst. Emphasis was placed on the initiation of the radical chain reaction by investigation of the aldehyde-polyoxometalate interaction. Using 31P NMR and ESR spectroscopy one could differentiate between the reactivity of the five inseparable isomers of α-H5PV2Mo10O40. Contrary to previous belief, the 1,11 isomer with vanadium in distal positions is the most abundant. The 31P NMR and ESR spectra supported by UV-vis absorption-time profiles of the reduction of α-H5PV2Mo10O40 indicated that isomers with vanadium in vicinal positions were most kinetically viable in the alkane oxidation. Addition of isobutyraldehyde to α-H5PV2Mo10O40 gave in the 51V NMR spectrum a new downfield peak attributed to the formation of an aldehyde-polyoxometalate intermediate. The alkane/aldehyde/02 oxidizing system was found to be quite effective and selective for ketone formation. Reaction probes indicated that acyl peroxo radicals were the active oxidizing intermediates. Five pathways for its reaction were identified: chain propagation, alkane oxidation, decomposition to form oxygen, decomposition to acyl oxo radicals leading to CO2 and ketone, and capture and inhibition by the polyoxometalate.
Original language | English |
---|---|
Article number | jcat.1998.2323 |
Pages (from-to) | 82-91 |
Number of pages | 10 |
Journal | Journal of Catalysis |
Volume | 182 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 1 1999 |
Keywords
- Aldehyde
- Alkane oxidation
- Oxygen
- Polyoxometalate
ASJC Scopus subject areas
- Catalysis
- Physical and Theoretical Chemistry