Recent advances in nanostructured chemosensors and biosensors

Tewodros Asefa, Cole T. Duncan, Krishna K. Sharma

Research output: Contribution to journalReview articlepeer-review

140 Citations (Scopus)


Over the past few decades the fabrication of nanoscale materials for use in chemical sensing, biomedical and biological analyses has proven a promising avenue. Nanomaterials show promise in such chemical and biological analysis mainly due to their highly tunable size- and shape-dependent chemical and physical properties. Furthermore, they exhibit unique surface chemistry, thermal stability, high surface area and large pore volume per unit mass that can be exploited for sensor fabrication. This review will discuss the chemical and physical properties of nanomaterials necessary for use as chemosensors and biosensors. It will also highlight some noteworthy recent avenues using nanoscale materials as scaffolds for chemosensing and biosensing. Nanomaterials that have proven to be useful for the fabrication of sensors, as reviewed herein, have compositions including metals, metal oxides, chalcogenides and polymers. Their structures range from nanoparticles, nanorods, and nanowires to nanoporous and core-shells. Examples of the different types of structures and compositions as well as sensors and biosensors fabricated from them will be described. Some nanomaterials are functionalized with various kinds of ligands and bioactive groups to produce sensitive and selective sensors for specific analytes. The combination of two or more types of nanostructures with core-shell type nanoassemblies and other composite structures, in addition to advantageous features enhancing sensitivity and response time of related sensors, are also discussed.

Original languageEnglish
Pages (from-to)1980-1990
Number of pages11
Issue number10
Publication statusPublished - 2009

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Environmental Chemistry
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Recent advances in nanostructured chemosensors and biosensors'. Together they form a unique fingerprint.

Cite this