Reconfigurable DNA origami to generate quasifractal patterns

Fei Zhang, Jeanette Nangreave, Yan Liu, Hao Yan

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

The specificity of Watson-Crick base pairing, unique mechanical properties of DNA, and intrinsic stability of DNA double helices makes DNA an ideal material for the construction of dynamic nanodevices. Rationally designed strand displacement reactions can be used to produce dynamic reconfiguration of DNA nanostructures postassembly. Here we describe a 'fold-release-fold' strategy of multiple strand displacement and hybridization reactions to reconfigure a simple DNA origami structure into a complex, quasifractal pattern, demonstrating a complex transformation of DNA nanoarchitectures.

Original languageEnglish
Pages (from-to)3290-3295
Number of pages6
JournalNano Letters
Volume12
Issue number6
DOIs
Publication statusPublished - Jun 13 2012

Fingerprint

DNA
deoxyribonucleic acid
strands
helices
Nanostructures
mechanical properties
Mechanical properties

Keywords

  • Dynamic DNA nanotechnology
  • fractal
  • reconfiguration
  • strand displacement

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanical Engineering

Cite this

Reconfigurable DNA origami to generate quasifractal patterns. / Zhang, Fei; Nangreave, Jeanette; Liu, Yan; Yan, Hao.

In: Nano Letters, Vol. 12, No. 6, 13.06.2012, p. 3290-3295.

Research output: Contribution to journalArticle

Zhang, Fei ; Nangreave, Jeanette ; Liu, Yan ; Yan, Hao. / Reconfigurable DNA origami to generate quasifractal patterns. In: Nano Letters. 2012 ; Vol. 12, No. 6. pp. 3290-3295.
@article{990fd649381e4872802fefb2c4937710,
title = "Reconfigurable DNA origami to generate quasifractal patterns",
abstract = "The specificity of Watson-Crick base pairing, unique mechanical properties of DNA, and intrinsic stability of DNA double helices makes DNA an ideal material for the construction of dynamic nanodevices. Rationally designed strand displacement reactions can be used to produce dynamic reconfiguration of DNA nanostructures postassembly. Here we describe a 'fold-release-fold' strategy of multiple strand displacement and hybridization reactions to reconfigure a simple DNA origami structure into a complex, quasifractal pattern, demonstrating a complex transformation of DNA nanoarchitectures.",
keywords = "Dynamic DNA nanotechnology, fractal, reconfiguration, strand displacement",
author = "Fei Zhang and Jeanette Nangreave and Yan Liu and Hao Yan",
year = "2012",
month = "6",
day = "13",
doi = "10.1021/nl301399z",
language = "English",
volume = "12",
pages = "3290--3295",
journal = "Nano Letters",
issn = "1530-6984",
publisher = "American Chemical Society",
number = "6",

}

TY - JOUR

T1 - Reconfigurable DNA origami to generate quasifractal patterns

AU - Zhang, Fei

AU - Nangreave, Jeanette

AU - Liu, Yan

AU - Yan, Hao

PY - 2012/6/13

Y1 - 2012/6/13

N2 - The specificity of Watson-Crick base pairing, unique mechanical properties of DNA, and intrinsic stability of DNA double helices makes DNA an ideal material for the construction of dynamic nanodevices. Rationally designed strand displacement reactions can be used to produce dynamic reconfiguration of DNA nanostructures postassembly. Here we describe a 'fold-release-fold' strategy of multiple strand displacement and hybridization reactions to reconfigure a simple DNA origami structure into a complex, quasifractal pattern, demonstrating a complex transformation of DNA nanoarchitectures.

AB - The specificity of Watson-Crick base pairing, unique mechanical properties of DNA, and intrinsic stability of DNA double helices makes DNA an ideal material for the construction of dynamic nanodevices. Rationally designed strand displacement reactions can be used to produce dynamic reconfiguration of DNA nanostructures postassembly. Here we describe a 'fold-release-fold' strategy of multiple strand displacement and hybridization reactions to reconfigure a simple DNA origami structure into a complex, quasifractal pattern, demonstrating a complex transformation of DNA nanoarchitectures.

KW - Dynamic DNA nanotechnology

KW - fractal

KW - reconfiguration

KW - strand displacement

UR - http://www.scopus.com/inward/record.url?scp=84862275855&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84862275855&partnerID=8YFLogxK

U2 - 10.1021/nl301399z

DO - 10.1021/nl301399z

M3 - Article

VL - 12

SP - 3290

EP - 3295

JO - Nano Letters

JF - Nano Letters

SN - 1530-6984

IS - 6

ER -