TY - JOUR
T1 - Redox Control of the Binding Modes of an Organic Receptor
AU - Frasconi, Marco
AU - Fernando, Isurika R.
AU - Wu, Yilei
AU - Liu, Zhichang
AU - Liu, Wei Guang
AU - Dyar, Scott M.
AU - Barin, Gokhan
AU - Wasielewski, Michael R.
AU - Goddard, William A.
AU - Stoddart, J. Fraser
PY - 2015/9/2
Y1 - 2015/9/2
N2 - The modulation of noncovalent bonding interactions by redox processes is a central theme in the fundamental understanding of biological systems as well as being ripe for exploitation in supramolecular science. In the context of host-guest systems, we demonstrate in this article how the formation of inclusion complexes can be controlled by manipulating the redox potential of a cyclophane. The four-electron reduction of cyclobis(paraquat-p-phenylene) to its neutral form results in altering its binding properties while heralding a significant change in its stereoelectronic behavior. Quantum mechanics calculations provide the energetics for the formation of the inclusion complexes between the cyclophane in its various redox states with a variety of guest molecules, ranging from electron-poor to electron-rich. The electron-donating properties displayed by the cyclophane were investigated by probing the interaction of this host with electron-poor guests, and the formation of inclusion complexes was confirmed by single-crystal X-ray diffraction analysis. The dramatic change in the binding mode depending on the redox state of the cyclophane leads to (i) aromatic donor-acceptor interactions in its fully oxidized form and (ii) van der Waals interactions when the cyclophane is fully reduced. These findings lay the foundation for the potential use of this class of cyclophane in various arenas, all the way from molecular electronics to catalysis, by virtue of its electronic properties. The extension of the concept presented herein into the realm of mechanically interlocked molecules will lead to the investigation of novel structures with redox control being expressed over the relative geometries of their components. (Figure Presented).
AB - The modulation of noncovalent bonding interactions by redox processes is a central theme in the fundamental understanding of biological systems as well as being ripe for exploitation in supramolecular science. In the context of host-guest systems, we demonstrate in this article how the formation of inclusion complexes can be controlled by manipulating the redox potential of a cyclophane. The four-electron reduction of cyclobis(paraquat-p-phenylene) to its neutral form results in altering its binding properties while heralding a significant change in its stereoelectronic behavior. Quantum mechanics calculations provide the energetics for the formation of the inclusion complexes between the cyclophane in its various redox states with a variety of guest molecules, ranging from electron-poor to electron-rich. The electron-donating properties displayed by the cyclophane were investigated by probing the interaction of this host with electron-poor guests, and the formation of inclusion complexes was confirmed by single-crystal X-ray diffraction analysis. The dramatic change in the binding mode depending on the redox state of the cyclophane leads to (i) aromatic donor-acceptor interactions in its fully oxidized form and (ii) van der Waals interactions when the cyclophane is fully reduced. These findings lay the foundation for the potential use of this class of cyclophane in various arenas, all the way from molecular electronics to catalysis, by virtue of its electronic properties. The extension of the concept presented herein into the realm of mechanically interlocked molecules will lead to the investigation of novel structures with redox control being expressed over the relative geometries of their components. (Figure Presented).
UR - http://www.scopus.com/inward/record.url?scp=84940985767&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84940985767&partnerID=8YFLogxK
U2 - 10.1021/jacs.5b05618
DO - 10.1021/jacs.5b05618
M3 - Article
C2 - 26237091
AN - SCOPUS:84940985767
VL - 137
SP - 11057
EP - 11068
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
SN - 0002-7863
IS - 34
ER -