Rerouting of Metabolism into Desired Cellular Products by Nutrient Stress: Fluxes Reveal the Selected Pathways in Cyanobacterial Photosynthesis

Xiao Qian, Yuan Zhang, Desmond S. Lun, G. Charles Dismukes

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


Boosting cellular growth rates while redirecting metabolism to make desired products are the preeminent goals of gene engineering of photoautotrophs, yet so far these goals have been hardly achieved owing to lack of understanding of the functional pathways and their choke points. Here we apply a 13 C mass isotopic method (INST-MFA) to quantify instantaneous fluxes of metabolites during photoautotrophic growth. INST-MFA determines the globally most accurate set of absolute fluxes for each metabolite from a finite set of measured 13 C-isotopomer fluxes by minimizing the sum of squared residuals between experimental and predicted mass isotopomers. We show that the widely observed shift in biomass composition in cyanobacteria, demonstrated here with Synechococcus sp. PCC 7002, favoring glycogen synthesis during nitrogen starvation is caused by (1) increased flux through a bottleneck step in gluconeogenesis (3PG → GAP/DHAP), and (2) flux overflow through a previously unrecognized hybrid gluconeogenesis-pentose phosphate (hGPP) pathway. Our data suggest the slower growth rate and biomass accumulation under N starvation is due to a reduced carbon fixation rate and a reduced flux of carbon into amino acid precursors. Additionally, 13 C flux from α-ketoglutarate to succinate is demonstrated to occur via succinic semialdehyde, an alternative to the conventional TCA cycle, in Synechococcus 7002 under photoautotrophic conditions. We found that pyruvate and oxaloacetate are synthesized mainly by malate dehydrogenase with minimal flux into acetyl coenzyme-A via pyruvate dehydrogenase. Nutrient stress induces major shifts in fluxes into new pathways that deviate from historical metabolic pathways derived from model bacteria.

Original languageEnglish
Pages (from-to)1465-1476
Number of pages12
JournalACS Synthetic Biology
Issue number5
Publication statusPublished - May 18 2018


  • cyanobacteria
  • hGPP pathway
  • malic cyclic route
  • nitrogen starvation
  • photosynthesis

ASJC Scopus subject areas

  • Biomedical Engineering
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)

Fingerprint Dive into the research topics of 'Rerouting of Metabolism into Desired Cellular Products by Nutrient Stress: Fluxes Reveal the Selected Pathways in Cyanobacterial Photosynthesis'. Together they form a unique fingerprint.

Cite this