Resonance-Enhanced Raman Scattering in the Near-Infrared Region. Preliminary Studies of Charge Transfer in the Symmetric Dimers (2,2β-bpy)2ClRu-4,4'-bpy-RuCl(2,2'-bpy)24+/3+/2+, (H3N)5Ru-4,4'-bpy-Ru(NH3)56+/5+/4+, and (NC)5Fe-4,4'-bpy-Fe(CN)54-/5-/6-

S. K. Doorn, Joseph T Hupp, D. R. Porterfield, A. Campion, D. B. Chase

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Three symmetrical mixed-valence dimers (and their oxidized and reduced congeners) have been examined in solution by Raman spectroscopy with use of near-infrared excitation (1064 nm, Nd:YAG source). The specific systems were (2,2'-bpy)2CIRu-4,4'-bpy-RuCl(2,2'bpy)24+/3+/2+, (H3N)5Ru-4,4'-bpy-Ru(NH3)56+/5+/4+, and (NC)5Fe-4,4'-bpy-Fe(CN)54-/5-/6-. At 1064 nm the excitation source is nearly in resonance with the metal-to-metal or intervalence charge-transfer transition found in each of the mixed-valence ions. Consequently, resonance-enhanced scattering might be expected. From time-dependent Raman scattering theory, this would then provide a basis for a mode-by-mode evaluation of the Franck-Condon factors associated with intervalence charge transfer (J. Am. Chem. Soc. 1989, 111, 1142). For two of the mixed-valence ions, resonance-enhanced Raman scattering indeed is found. (For the third, the decacyano ion, extensive thermal degradation occurs.) Studies of the corresponding fully reduced ions show, however, that the enhancement effects are due not to intervalence excitation but to weakly preresonant metal-to-ligand excitation. Nevertheless, the experiments do serve to indicate the conditions that will likely be necessary in order to observe intervalence enhancement in symmetrical systems.

Original languageEnglish
Pages (from-to)4999-5002
Number of pages4
JournalJournal of the American Chemical Society
Volume112
Issue number13
DOIs
Publication statusPublished - Jan 1 1990

Fingerprint

Raman Spectrum Analysis
Dimers
Charge transfer
Raman scattering
Ions
Infrared radiation
Metals
Raman spectroscopy
Pyrolysis
Hot Temperature
Ligands
Scattering
Experiments

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this

@article{3f6b400f5f1b476784436c77d8dd6ca1,
title = "Resonance-Enhanced Raman Scattering in the Near-Infrared Region. Preliminary Studies of Charge Transfer in the Symmetric Dimers (2,2β-bpy)2ClRu-4,4'-bpy-RuCl(2,2'-bpy)24+/3+/2+, (H3N)5Ru-4,4'-bpy-Ru(NH3)56+/5+/4+, and (NC)5Fe-4,4'-bpy-Fe(CN)54-/5-/6-",
abstract = "Three symmetrical mixed-valence dimers (and their oxidized and reduced congeners) have been examined in solution by Raman spectroscopy with use of near-infrared excitation (1064 nm, Nd:YAG source). The specific systems were (2,2'-bpy)2CIRu-4,4'-bpy-RuCl(2,2'bpy)24+/3+/2+, (H3N)5Ru-4,4'-bpy-Ru(NH3)56+/5+/4+, and (NC)5Fe-4,4'-bpy-Fe(CN)54-/5-/6-. At 1064 nm the excitation source is nearly in resonance with the metal-to-metal or intervalence charge-transfer transition found in each of the mixed-valence ions. Consequently, resonance-enhanced scattering might be expected. From time-dependent Raman scattering theory, this would then provide a basis for a mode-by-mode evaluation of the Franck-Condon factors associated with intervalence charge transfer (J. Am. Chem. Soc. 1989, 111, 1142). For two of the mixed-valence ions, resonance-enhanced Raman scattering indeed is found. (For the third, the decacyano ion, extensive thermal degradation occurs.) Studies of the corresponding fully reduced ions show, however, that the enhancement effects are due not to intervalence excitation but to weakly preresonant metal-to-ligand excitation. Nevertheless, the experiments do serve to indicate the conditions that will likely be necessary in order to observe intervalence enhancement in symmetrical systems.",
author = "Doorn, {S. K.} and Hupp, {Joseph T} and Porterfield, {D. R.} and A. Campion and Chase, {D. B.}",
year = "1990",
month = "1",
day = "1",
doi = "10.1021/ja00169a001",
language = "English",
volume = "112",
pages = "4999--5002",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "13",

}

TY - JOUR

T1 - Resonance-Enhanced Raman Scattering in the Near-Infrared Region. Preliminary Studies of Charge Transfer in the Symmetric Dimers (2,2β-bpy)2ClRu-4,4'-bpy-RuCl(2,2'-bpy)24+/3+/2+, (H3N)5Ru-4,4'-bpy-Ru(NH3)56+/5+/4+, and (NC)5Fe-4,4'-bpy-Fe(CN)54-/5-/6-

AU - Doorn, S. K.

AU - Hupp, Joseph T

AU - Porterfield, D. R.

AU - Campion, A.

AU - Chase, D. B.

PY - 1990/1/1

Y1 - 1990/1/1

N2 - Three symmetrical mixed-valence dimers (and their oxidized and reduced congeners) have been examined in solution by Raman spectroscopy with use of near-infrared excitation (1064 nm, Nd:YAG source). The specific systems were (2,2'-bpy)2CIRu-4,4'-bpy-RuCl(2,2'bpy)24+/3+/2+, (H3N)5Ru-4,4'-bpy-Ru(NH3)56+/5+/4+, and (NC)5Fe-4,4'-bpy-Fe(CN)54-/5-/6-. At 1064 nm the excitation source is nearly in resonance with the metal-to-metal or intervalence charge-transfer transition found in each of the mixed-valence ions. Consequently, resonance-enhanced scattering might be expected. From time-dependent Raman scattering theory, this would then provide a basis for a mode-by-mode evaluation of the Franck-Condon factors associated with intervalence charge transfer (J. Am. Chem. Soc. 1989, 111, 1142). For two of the mixed-valence ions, resonance-enhanced Raman scattering indeed is found. (For the third, the decacyano ion, extensive thermal degradation occurs.) Studies of the corresponding fully reduced ions show, however, that the enhancement effects are due not to intervalence excitation but to weakly preresonant metal-to-ligand excitation. Nevertheless, the experiments do serve to indicate the conditions that will likely be necessary in order to observe intervalence enhancement in symmetrical systems.

AB - Three symmetrical mixed-valence dimers (and their oxidized and reduced congeners) have been examined in solution by Raman spectroscopy with use of near-infrared excitation (1064 nm, Nd:YAG source). The specific systems were (2,2'-bpy)2CIRu-4,4'-bpy-RuCl(2,2'bpy)24+/3+/2+, (H3N)5Ru-4,4'-bpy-Ru(NH3)56+/5+/4+, and (NC)5Fe-4,4'-bpy-Fe(CN)54-/5-/6-. At 1064 nm the excitation source is nearly in resonance with the metal-to-metal or intervalence charge-transfer transition found in each of the mixed-valence ions. Consequently, resonance-enhanced scattering might be expected. From time-dependent Raman scattering theory, this would then provide a basis for a mode-by-mode evaluation of the Franck-Condon factors associated with intervalence charge transfer (J. Am. Chem. Soc. 1989, 111, 1142). For two of the mixed-valence ions, resonance-enhanced Raman scattering indeed is found. (For the third, the decacyano ion, extensive thermal degradation occurs.) Studies of the corresponding fully reduced ions show, however, that the enhancement effects are due not to intervalence excitation but to weakly preresonant metal-to-ligand excitation. Nevertheless, the experiments do serve to indicate the conditions that will likely be necessary in order to observe intervalence enhancement in symmetrical systems.

UR - http://www.scopus.com/inward/record.url?scp=0000490475&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000490475&partnerID=8YFLogxK

U2 - 10.1021/ja00169a001

DO - 10.1021/ja00169a001

M3 - Article

AN - SCOPUS:0000490475

VL - 112

SP - 4999

EP - 5002

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 13

ER -