Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals

William D. Rice, Wenyong Liu, Thomas A. Baker, Nikolai A. Sinitsyn, Victor I. Klimov, Scott A. Crooker

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)


Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn 2+, Co 2+ and so on) couple to band carriers via strong sp-d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical fluctuations of N spins are expected to generate giant effective magnetic fields B eff, which should dramatically impact carrier spin dynamics, even in the absence of any applied field. Here we directly and unambiguously reveal the large B eff that exist in Mn 2+ -doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300-600â €...GHz) spin precession of photoinjected electrons is observed, indicating B eff â 1/4 15 â '30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. These signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn 2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.

Original languageEnglish
Pages (from-to)137-142
Number of pages6
JournalNature nanotechnology
Issue number2
Publication statusPublished - Feb 1 2016

ASJC Scopus subject areas

  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering
  • Materials Science(all)
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals'. Together they form a unique fingerprint.

Cite this