Revisiting Conversion Reaction Mechanisms in Lithium Batteries: Lithiation-Driven Topotactic Transformation in FeF2

Khim Karki, Lijun Wu, Ying Ma, Mark J. Armstrong, Justin D. Holmes, Steve Garofalini, Yimei Zhu, Eric A. Stach, Feng Wang

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Intercalation-type electrodes have now been commonly employed in today's batteries as such materials are capable of storing and releasing lithium reversibly via topotactic transformation, conducive to small structural change, but they have limited interstitial sites to hold Li. In contrast, conversion electrodes feature high Li-storage capacity, but often undergo large structural change during (de)lithiation, resulting in cycling instability. One exception is iron fluoride (FeF2), a conversion-type cathode that exhibits both high capacity and high cycling stability. Herein, we report a lithiation-driven topotactic transformation in a single crystal of FeF2, unveiled by in situ visualization of the spatial and crystallographic correlation between the parent and converted phases. Specifically, conversion in FeF2 resembles the intercalation process but involves transport of both Li+ and Fe2+ ions within the F-anion array, leading to formation of Fe preferentially along specific crystallographic orientations of FeF2. Throughout the process, the F-anion framework is retained, creating a checkerboard-like structure, within which the volume change is largely compensated, thereby enabling the high cyclability in FeF2. Findings from this study, with unique insights into conversion reaction mechanisms, may help to pave the way for designing conversion-type electrodes for the next-generation high energy lithium batteries.

Original languageEnglish
JournalJournal of the American Chemical Society
DOIs
Publication statusAccepted/In press - Jan 1 2018

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Revisiting Conversion Reaction Mechanisms in Lithium Batteries: Lithiation-Driven Topotactic Transformation in FeF<sub>2</sub>'. Together they form a unique fingerprint.

  • Cite this