Role of bridge energetics on the preference for hole or electron transfer leading to charge recombination in donor-bridge-acceptor molecules

Michael T. Colvin, Annie Butler Ricks, Michael R. Wasielewski

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

The impact of donor-acceptor electronic coupling and bridge energetics on the preference for hole or electron transfer leading to charge recombination in a series of donor-bridge-acceptor (D-B-A) molecules was examined. In these systems, the donor is 3,5-dimethyl-4-(9-anthracenyl)-julolidine (DMJ-An) and acceptor is naphthalene-1,8:4,5-bis(dicarboximide) (NI), while the bridges are either oligo(p-phenyleneethynylene) (PE nP, where n = 1-3) 1-3 or oligo(2,7-fluorenone) (FN n, where n = 1-3) 4-6. Photoexcitation of 1-3 and 4-6 produces DMJ +•-An-PE nP-NI -• and DMJ +•-An-FN n-NI -•, respectively, which undergo radical pair intersystem crossing followed by charge recombination to yield both 3*An and 3*NI, which are observed by time-resolved electron paramagnetic resonance (TREPR) spectroscopy. 3*NI is produced by hole transfer from DMJ +• to NI -•, while 3*An is produced by electron transfer from NI -• to DMJ +•, using the agency of the bridge HOMOs and LUMOs, respectively. By monitoring the initial population of 3*NI and 3*An in 1-6, the data show that charge recombination occurs preferentially by selective hole transfer when the bridge is PE nP, while it occurs by preferential electron transfer when the bridge is FN n. Over time, the initial population of 3*NI decreases, while that of 3*An increases, indicating that triplet-triplet energy transfer (TEnT) occurs. The observed distance dependence of TEnT from 3*NI to An is weakly exponential with a decay parameter β = 0.08 Å -1 for the PE nP series and β = 0.03 Å -1 for the FN n series. In the PE nP series, this weak distance dependence is attributed to a transition from the superexchange regime to hopping transport as the energy gap for triplet energy injection onto the bridge becomes significantly smaller as n increases, while in the FN n series the corresponding energy gap is small for all n resulting in triplet energy transport by the hopping mechanism.

Original languageEnglish
Pages (from-to)2184-2191
Number of pages8
JournalJournal of Physical Chemistry A
Volume116
Issue number9
DOIs
Publication statusPublished - Mar 8 2012

    Fingerprint

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Cite this