Role of structural relaxations and chemical substitutions on piezoelectric fields and potential lineup in (formula presented) junctions

S. Picozzi, G. Profeta, A. Continenza, S. Massidda, Arthur J Freeman

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

First-principles full-potential linearized augmented plane wave calculations are performed to clarify the role of the interface geometry on piezoelectric fields and potential lineups in [0001] wurtzite and [111]-zincblende GaN/Al junctions. The electric field (polarity and magnitude) is found to be strongly affected by atomic relaxations in the interface region. A procedure is used to evaluate the Schottky-barrier height in the presence of electric fields, showing that their effect is relatively small (a few tenths of an eV). These calculations assess the rectifying behavior of the GaN/Al contact, in agreement with experimental values for the barrier. We disentangle chemical and structural effects on the relevant properties (such as the potential discontinuity and the electric field) by studying unrelaxed ideal nitride/metal systems. Using simple electronegativity arguments, we outline the leading mechanisms that define the values of the electric field and Schottky barrier in these ideal systems. Finally, the transitivity rule is proved to be well satisfied.

Original languageEnglish
Pages (from-to)1-7
Number of pages7
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume65
Issue number16
DOIs
Publication statusPublished - Jan 1 2002

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Role of structural relaxations and chemical substitutions on piezoelectric fields and potential lineup in (formula presented) junctions'. Together they form a unique fingerprint.

  • Cite this