Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors

Constantinos C. Stoumpos, Duyen H. Cao, Daniel J. Clark, Joshua Young, James M. Rondinelli, Joon I. Jang, Joseph T Hupp, Mercouri G Kanatzidis

Research output: Contribution to journalArticle

337 Citations (Scopus)

Abstract

The hybrid two-dimensional (2D) halide perovskites have recently drawn significant interest because they can serve as excellent photoabsorbers in perovskite solar cells. Here we present the large scale synthesis, crystal structure, and optical characterization of the 2D (CH3(CH2)3NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3, 4, ∞) perovskites, a family of layered compounds with tunable semiconductor characteristics. These materials consist of well-defined inorganic perovskite layers intercalated with bulky butylammonium cations that act as spacers between these fragments, adopting the crystal structure of the Ruddlesden-Popper type. We find that the perovskite thickness (n) can be synthetically controlled by adjusting the ratio between the spacer cation and the small organic cation, thus allowing the isolation of compounds in pure form and large scale. The orthorhombic crystal structures of (CH3(CH2)3NH3)2(CH3NH3)Pb2I7 (n = 2, Cc2m; a = 8.9470(4), b = 39.347(2) Å, c = 8.8589(6)), (CH3(CH2)3NH3)2(CH3NH3)2Pb3I10 (n = 3, C2cb; a = 8.9275(6), b = 51.959(4) Å, c = 8.8777(6)), and (CH3(CH2)3NH3)2(CH3NH3)3Pb4I13 (n = 4, Cc2m; a = 8.9274(4), b = 64.383(4) Å, c = 8.8816(4)) have been solved by single-crystal X-ray diffraction and are reported here for the first time. The compounds are noncentrosymmetric, as supported by measurements of the nonlinear optical properties of the compounds and density functional theory (DFT) calculations. The band gaps of the series change progressively between 2.43 eV for the n = 1 member to 1.50 eV for the n = ∞ adopting intermediate values of 2.17 eV (n = 2), 2.03 eV (n = 3), and 1.91 eV (n = 4) for those between the two compositional extrema. DFT calculations confirm this experimental trend and predict a direct band gap for all the members of the Ruddlesden-Popper series. The estimated effective masses have values of mh = 0.14 m0 and me = 0.08 m0 for holes and electrons, respectively, and are found to be nearly composition independent. The band gaps of higher n members indicate that these compounds can be used as efficient light absorbers in solar cells, which offer better solution processability and good environmental stability. The compounds exhibit intense room-temperature photoluminescence with emission wavelengths consistent with their energy gaps, 2.35 eV (n = 1), 2.12 eV (n = 2), 2.01 eV (n = 3), and 1.90 eV (n = 4) and point to their potential use in light-emitting diodes. In addition, owing to the low dimensionality and the difference in dielectric properties between the organic spacers and the inorganic perovskite layers, these compounds are naturally occurring multiple quantum well structures, which give rise to stable excitons at room temperature.

Original languageEnglish
Pages (from-to)2852-2867
Number of pages16
JournalChemistry of Materials
Volume28
Issue number8
DOIs
Publication statusPublished - May 10 2016

Fingerprint

Iodides
Perovskite
Energy gap
Lead
Semiconductor materials
Cations
Crystal structure
Positive ions
Density functional theory
Excitons
Dielectric properties
Semiconductor quantum wells
Light emitting diodes
Solar cells
Photoluminescence
Optical properties
Single crystals
X ray diffraction
Wavelength
Temperature

ASJC Scopus subject areas

  • Materials Chemistry
  • Chemical Engineering(all)
  • Chemistry(all)

Cite this

Stoumpos, C. C., Cao, D. H., Clark, D. J., Young, J., Rondinelli, J. M., Jang, J. I., ... Kanatzidis, M. G. (2016). Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chemistry of Materials, 28(8), 2852-2867. https://doi.org/10.1021/acs.chemmater.6b00847

Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. / Stoumpos, Constantinos C.; Cao, Duyen H.; Clark, Daniel J.; Young, Joshua; Rondinelli, James M.; Jang, Joon I.; Hupp, Joseph T; Kanatzidis, Mercouri G.

In: Chemistry of Materials, Vol. 28, No. 8, 10.05.2016, p. 2852-2867.

Research output: Contribution to journalArticle

Stoumpos CC, Cao DH, Clark DJ, Young J, Rondinelli JM, Jang JI et al. Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. Chemistry of Materials. 2016 May 10;28(8):2852-2867. https://doi.org/10.1021/acs.chemmater.6b00847
Stoumpos, Constantinos C. ; Cao, Duyen H. ; Clark, Daniel J. ; Young, Joshua ; Rondinelli, James M. ; Jang, Joon I. ; Hupp, Joseph T ; Kanatzidis, Mercouri G. / Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors. In: Chemistry of Materials. 2016 ; Vol. 28, No. 8. pp. 2852-2867.
@article{f248faa946d84baaaf8b01ead9d242de,
title = "Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors",
abstract = "The hybrid two-dimensional (2D) halide perovskites have recently drawn significant interest because they can serve as excellent photoabsorbers in perovskite solar cells. Here we present the large scale synthesis, crystal structure, and optical characterization of the 2D (CH3(CH2)3NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3, 4, ∞) perovskites, a family of layered compounds with tunable semiconductor characteristics. These materials consist of well-defined inorganic perovskite layers intercalated with bulky butylammonium cations that act as spacers between these fragments, adopting the crystal structure of the Ruddlesden-Popper type. We find that the perovskite thickness (n) can be synthetically controlled by adjusting the ratio between the spacer cation and the small organic cation, thus allowing the isolation of compounds in pure form and large scale. The orthorhombic crystal structures of (CH3(CH2)3NH3)2(CH3NH3)Pb2I7 (n = 2, Cc2m; a = 8.9470(4), b = 39.347(2) {\AA}, c = 8.8589(6)), (CH3(CH2)3NH3)2(CH3NH3)2Pb3I10 (n = 3, C2cb; a = 8.9275(6), b = 51.959(4) {\AA}, c = 8.8777(6)), and (CH3(CH2)3NH3)2(CH3NH3)3Pb4I13 (n = 4, Cc2m; a = 8.9274(4), b = 64.383(4) {\AA}, c = 8.8816(4)) have been solved by single-crystal X-ray diffraction and are reported here for the first time. The compounds are noncentrosymmetric, as supported by measurements of the nonlinear optical properties of the compounds and density functional theory (DFT) calculations. The band gaps of the series change progressively between 2.43 eV for the n = 1 member to 1.50 eV for the n = ∞ adopting intermediate values of 2.17 eV (n = 2), 2.03 eV (n = 3), and 1.91 eV (n = 4) for those between the two compositional extrema. DFT calculations confirm this experimental trend and predict a direct band gap for all the members of the Ruddlesden-Popper series. The estimated effective masses have values of mh = 0.14 m0 and me = 0.08 m0 for holes and electrons, respectively, and are found to be nearly composition independent. The band gaps of higher n members indicate that these compounds can be used as efficient light absorbers in solar cells, which offer better solution processability and good environmental stability. The compounds exhibit intense room-temperature photoluminescence with emission wavelengths consistent with their energy gaps, 2.35 eV (n = 1), 2.12 eV (n = 2), 2.01 eV (n = 3), and 1.90 eV (n = 4) and point to their potential use in light-emitting diodes. In addition, owing to the low dimensionality and the difference in dielectric properties between the organic spacers and the inorganic perovskite layers, these compounds are naturally occurring multiple quantum well structures, which give rise to stable excitons at room temperature.",
author = "Stoumpos, {Constantinos C.} and Cao, {Duyen H.} and Clark, {Daniel J.} and Joshua Young and Rondinelli, {James M.} and Jang, {Joon I.} and Hupp, {Joseph T} and Kanatzidis, {Mercouri G}",
year = "2016",
month = "5",
day = "10",
doi = "10.1021/acs.chemmater.6b00847",
language = "English",
volume = "28",
pages = "2852--2867",
journal = "Chemistry of Materials",
issn = "0897-4756",
publisher = "American Chemical Society",
number = "8",

}

TY - JOUR

T1 - Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors

AU - Stoumpos, Constantinos C.

AU - Cao, Duyen H.

AU - Clark, Daniel J.

AU - Young, Joshua

AU - Rondinelli, James M.

AU - Jang, Joon I.

AU - Hupp, Joseph T

AU - Kanatzidis, Mercouri G

PY - 2016/5/10

Y1 - 2016/5/10

N2 - The hybrid two-dimensional (2D) halide perovskites have recently drawn significant interest because they can serve as excellent photoabsorbers in perovskite solar cells. Here we present the large scale synthesis, crystal structure, and optical characterization of the 2D (CH3(CH2)3NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3, 4, ∞) perovskites, a family of layered compounds with tunable semiconductor characteristics. These materials consist of well-defined inorganic perovskite layers intercalated with bulky butylammonium cations that act as spacers between these fragments, adopting the crystal structure of the Ruddlesden-Popper type. We find that the perovskite thickness (n) can be synthetically controlled by adjusting the ratio between the spacer cation and the small organic cation, thus allowing the isolation of compounds in pure form and large scale. The orthorhombic crystal structures of (CH3(CH2)3NH3)2(CH3NH3)Pb2I7 (n = 2, Cc2m; a = 8.9470(4), b = 39.347(2) Å, c = 8.8589(6)), (CH3(CH2)3NH3)2(CH3NH3)2Pb3I10 (n = 3, C2cb; a = 8.9275(6), b = 51.959(4) Å, c = 8.8777(6)), and (CH3(CH2)3NH3)2(CH3NH3)3Pb4I13 (n = 4, Cc2m; a = 8.9274(4), b = 64.383(4) Å, c = 8.8816(4)) have been solved by single-crystal X-ray diffraction and are reported here for the first time. The compounds are noncentrosymmetric, as supported by measurements of the nonlinear optical properties of the compounds and density functional theory (DFT) calculations. The band gaps of the series change progressively between 2.43 eV for the n = 1 member to 1.50 eV for the n = ∞ adopting intermediate values of 2.17 eV (n = 2), 2.03 eV (n = 3), and 1.91 eV (n = 4) for those between the two compositional extrema. DFT calculations confirm this experimental trend and predict a direct band gap for all the members of the Ruddlesden-Popper series. The estimated effective masses have values of mh = 0.14 m0 and me = 0.08 m0 for holes and electrons, respectively, and are found to be nearly composition independent. The band gaps of higher n members indicate that these compounds can be used as efficient light absorbers in solar cells, which offer better solution processability and good environmental stability. The compounds exhibit intense room-temperature photoluminescence with emission wavelengths consistent with their energy gaps, 2.35 eV (n = 1), 2.12 eV (n = 2), 2.01 eV (n = 3), and 1.90 eV (n = 4) and point to their potential use in light-emitting diodes. In addition, owing to the low dimensionality and the difference in dielectric properties between the organic spacers and the inorganic perovskite layers, these compounds are naturally occurring multiple quantum well structures, which give rise to stable excitons at room temperature.

AB - The hybrid two-dimensional (2D) halide perovskites have recently drawn significant interest because they can serve as excellent photoabsorbers in perovskite solar cells. Here we present the large scale synthesis, crystal structure, and optical characterization of the 2D (CH3(CH2)3NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3, 4, ∞) perovskites, a family of layered compounds with tunable semiconductor characteristics. These materials consist of well-defined inorganic perovskite layers intercalated with bulky butylammonium cations that act as spacers between these fragments, adopting the crystal structure of the Ruddlesden-Popper type. We find that the perovskite thickness (n) can be synthetically controlled by adjusting the ratio between the spacer cation and the small organic cation, thus allowing the isolation of compounds in pure form and large scale. The orthorhombic crystal structures of (CH3(CH2)3NH3)2(CH3NH3)Pb2I7 (n = 2, Cc2m; a = 8.9470(4), b = 39.347(2) Å, c = 8.8589(6)), (CH3(CH2)3NH3)2(CH3NH3)2Pb3I10 (n = 3, C2cb; a = 8.9275(6), b = 51.959(4) Å, c = 8.8777(6)), and (CH3(CH2)3NH3)2(CH3NH3)3Pb4I13 (n = 4, Cc2m; a = 8.9274(4), b = 64.383(4) Å, c = 8.8816(4)) have been solved by single-crystal X-ray diffraction and are reported here for the first time. The compounds are noncentrosymmetric, as supported by measurements of the nonlinear optical properties of the compounds and density functional theory (DFT) calculations. The band gaps of the series change progressively between 2.43 eV for the n = 1 member to 1.50 eV for the n = ∞ adopting intermediate values of 2.17 eV (n = 2), 2.03 eV (n = 3), and 1.91 eV (n = 4) for those between the two compositional extrema. DFT calculations confirm this experimental trend and predict a direct band gap for all the members of the Ruddlesden-Popper series. The estimated effective masses have values of mh = 0.14 m0 and me = 0.08 m0 for holes and electrons, respectively, and are found to be nearly composition independent. The band gaps of higher n members indicate that these compounds can be used as efficient light absorbers in solar cells, which offer better solution processability and good environmental stability. The compounds exhibit intense room-temperature photoluminescence with emission wavelengths consistent with their energy gaps, 2.35 eV (n = 1), 2.12 eV (n = 2), 2.01 eV (n = 3), and 1.90 eV (n = 4) and point to their potential use in light-emitting diodes. In addition, owing to the low dimensionality and the difference in dielectric properties between the organic spacers and the inorganic perovskite layers, these compounds are naturally occurring multiple quantum well structures, which give rise to stable excitons at room temperature.

UR - http://www.scopus.com/inward/record.url?scp=84969217953&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84969217953&partnerID=8YFLogxK

U2 - 10.1021/acs.chemmater.6b00847

DO - 10.1021/acs.chemmater.6b00847

M3 - Article

VL - 28

SP - 2852

EP - 2867

JO - Chemistry of Materials

JF - Chemistry of Materials

SN - 0897-4756

IS - 8

ER -