TY - JOUR
T1 - Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3-xS6 (x = 0.5-1) (KMS-2) relevant to nuclear waste remediation
AU - Mertz, Joshua L.
AU - Fard, Zohreh Hassanzadeh
AU - Malliakas, Christos D.
AU - Manos, Manolis J.
AU - Kanatzidis, Mercouri G.
PY - 2013/5/28
Y1 - 2013/5/28
N2 - 137Cs and 90Sr, both byproducts of the uranium and plutonium fission processes, make up the majority of high-level waste from nuclear power plants. 63Ni is a byproduct of the erosion-corrosion process of the reactor components in nuclear energy plants. The concentrations of these ions in solution determine the Waste Class (A, B, or C); thus, their selective removal in the presence of large excesses of nonradioactive ions is necessary to reduce waste volume and cut disposal costs. We report the new material K2xMgxSn3-xS6 (x = 0.5-1, KMS-2) and its application for the ion exchange of Cs+, Sr 2+, and Ni2+ in varying conditions. This compound crystallizes in the hexagonal space group P63/mmc with cell parameters a = b = 3.6749(8) Å and c = 16.827(4) Å. The difference in crystal structure between KMS-2, the previously reported Mn analog K 2xMnxSn3-xS6 (KMS-1), and their parent SnS2 is also described. Distribution coefficients for KMS-2 are high for Cs+ (7.1 × 103 mL/g) and Sr 2+ (2.1 × 104 mL/g) at neutral pH (∼ 6 ppm, V/m ∼1000 mL/g). We also report on the comparative study of Ni2+ ion exchange with both KMS-1 and KMS-2. Additional competitive reactions using Cs+, Sr2+, and Ni2+ in high concentrations of salt solution and at different pH values are reported.
AB - 137Cs and 90Sr, both byproducts of the uranium and plutonium fission processes, make up the majority of high-level waste from nuclear power plants. 63Ni is a byproduct of the erosion-corrosion process of the reactor components in nuclear energy plants. The concentrations of these ions in solution determine the Waste Class (A, B, or C); thus, their selective removal in the presence of large excesses of nonradioactive ions is necessary to reduce waste volume and cut disposal costs. We report the new material K2xMgxSn3-xS6 (x = 0.5-1, KMS-2) and its application for the ion exchange of Cs+, Sr 2+, and Ni2+ in varying conditions. This compound crystallizes in the hexagonal space group P63/mmc with cell parameters a = b = 3.6749(8) Å and c = 16.827(4) Å. The difference in crystal structure between KMS-2, the previously reported Mn analog K 2xMnxSn3-xS6 (KMS-1), and their parent SnS2 is also described. Distribution coefficients for KMS-2 are high for Cs+ (7.1 × 103 mL/g) and Sr 2+ (2.1 × 104 mL/g) at neutral pH (∼ 6 ppm, V/m ∼1000 mL/g). We also report on the comparative study of Ni2+ ion exchange with both KMS-1 and KMS-2. Additional competitive reactions using Cs+, Sr2+, and Ni2+ in high concentrations of salt solution and at different pH values are reported.
KW - absorption
KW - cesium
KW - chalcogenide
KW - ion-exchange
KW - nuclear waste
KW - radioactive waste
KW - strontium
KW - waste management
UR - http://www.scopus.com/inward/record.url?scp=84878295318&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878295318&partnerID=8YFLogxK
U2 - 10.1021/cm400699r
DO - 10.1021/cm400699r
M3 - Article
AN - SCOPUS:84878295318
VL - 25
SP - 2116
EP - 2127
JO - Chemistry of Materials
JF - Chemistry of Materials
SN - 0897-4756
IS - 10
ER -