Self-assembling vascular endothelial growth factor nanoparticles improve function in spinocerebellar ataxia type 1

Yuan Shih Hu, Jeehaeh Do, Chandrakanth Reddy Edamakanti, Ameet R. Kini, Marco Martina, Samuel I Stupp, Puneet Opal

Research output: Contribution to journalArticle

2 Citations (Scopus)


There is increasing appreciation for the role of the neurovascular unit in neurodegenerative diseases. We showed previously that the angiogenic and neurotrophic cytokine, vascular endothelial growth factor (VEGF), is suppressed to abnormally low levels in spinocerebellar ataxia type 1 (SCA1), and that replenishing VEGF reverses the cerebellar pathology in SCA1 mice. In that study, however, we used a recombinant VEGF, which is extremely costly to manufacture and biologically unstable as well as immunogenic. To develop a more viable therapy, here we test a synthetic VEGF peptide amphiphile that self-assembles into nanoparticles. We show that this nano-VEGF has potent neurotrophic and angiogenic properties, is well-tolerated, and leads to functional improvement in SCA1 mice even when administered at advanced stages of the disease. This approach can be generalized to other neurotrophic factors or molecules that act in a paracrine manner, offering a novel therapeutic strategy for neurodegenerative conditions.

Original languageEnglish
Pages (from-to)312-321
Number of pages10
JournalBrain : a journal of neurology
Issue number2
Publication statusPublished - Feb 1 2019


ASJC Scopus subject areas

  • Clinical Neurology

Cite this