Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems

Research output: Contribution to journalArticle

908 Citations (Scopus)

Abstract

In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised of chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the ependencies of electron transfer rate constants on donor-acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular "wires" that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems. In this Account, we explore how self-assembly strategies involving π-stacking can be used to integrate light harvesting with charge separation and transport. Our current strategy uses covalent building blocks based on chemically robust arylene imide and diimide dyes, biomimetic porphyrins, and chlorophylls. We take advantage of the shapes, sizes, and intermolecular interactionsssuch as π-π and/or metal-ligand interactionssof these molecules to direct the formation of supramolecular structures having enhanced energy capture and charge-transport properties. We use small- and wide-angle X-ray scattering (SAXS/WAXS) from a synchrotron source to elucidate the solution phase structures of these monodisperse noncovalent aggregates. We expect that a greater understanding of self-assembly using π-stacking and molecular designs that combine those features with hydrogen bonding and metal-ligand bonding could simplify the structure of the building blocks for artificial photosynthetic complexes, while retaining their ability to assemble complex, photofunctional structures.

Original languageEnglish
Pages (from-to)1910-1921
Number of pages12
JournalAccounts of Chemical Research
Volume42
Issue number12
DOIs
Publication statusPublished - Dec 21 2009

Fingerprint

Self assembly
Chromophores
Electrons
Charge transfer
Metals
Photosynthetic Reaction Center Complex Proteins
Antennas
Imides
Ligands
Molecular recognition
Molecules
Photosynthesis
Excitation energy
Porphyrins
Biomimetics
Chlorophyll
Phase structure
X ray scattering
Synchrotrons
Energy conversion

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

@article{b61e630c253d478ab9c7c46f3c0c2ca7,
title = "Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems",
abstract = "In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised of chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the ependencies of electron transfer rate constants on donor-acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular {"}wires{"} that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems. In this Account, we explore how self-assembly strategies involving π-stacking can be used to integrate light harvesting with charge separation and transport. Our current strategy uses covalent building blocks based on chemically robust arylene imide and diimide dyes, biomimetic porphyrins, and chlorophylls. We take advantage of the shapes, sizes, and intermolecular interactionsssuch as π-π and/or metal-ligand interactionssof these molecules to direct the formation of supramolecular structures having enhanced energy capture and charge-transport properties. We use small- and wide-angle X-ray scattering (SAXS/WAXS) from a synchrotron source to elucidate the solution phase structures of these monodisperse noncovalent aggregates. We expect that a greater understanding of self-assembly using π-stacking and molecular designs that combine those features with hydrogen bonding and metal-ligand bonding could simplify the structure of the building blocks for artificial photosynthetic complexes, while retaining their ability to assemble complex, photofunctional structures.",
author = "Wasielewski, {Michael R}",
year = "2009",
month = "12",
day = "21",
doi = "10.1021/ar9001735",
language = "English",
volume = "42",
pages = "1910--1921",
journal = "Accounts of Chemical Research",
issn = "0001-4842",
publisher = "American Chemical Society",
number = "12",

}

TY - JOUR

T1 - Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems

AU - Wasielewski, Michael R

PY - 2009/12/21

Y1 - 2009/12/21

N2 - In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised of chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the ependencies of electron transfer rate constants on donor-acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular "wires" that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems. In this Account, we explore how self-assembly strategies involving π-stacking can be used to integrate light harvesting with charge separation and transport. Our current strategy uses covalent building blocks based on chemically robust arylene imide and diimide dyes, biomimetic porphyrins, and chlorophylls. We take advantage of the shapes, sizes, and intermolecular interactionsssuch as π-π and/or metal-ligand interactionssof these molecules to direct the formation of supramolecular structures having enhanced energy capture and charge-transport properties. We use small- and wide-angle X-ray scattering (SAXS/WAXS) from a synchrotron source to elucidate the solution phase structures of these monodisperse noncovalent aggregates. We expect that a greater understanding of self-assembly using π-stacking and molecular designs that combine those features with hydrogen bonding and metal-ligand bonding could simplify the structure of the building blocks for artificial photosynthetic complexes, while retaining their ability to assemble complex, photofunctional structures.

AB - In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised of chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the ependencies of electron transfer rate constants on donor-acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular "wires" that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems. In this Account, we explore how self-assembly strategies involving π-stacking can be used to integrate light harvesting with charge separation and transport. Our current strategy uses covalent building blocks based on chemically robust arylene imide and diimide dyes, biomimetic porphyrins, and chlorophylls. We take advantage of the shapes, sizes, and intermolecular interactionsssuch as π-π and/or metal-ligand interactionssof these molecules to direct the formation of supramolecular structures having enhanced energy capture and charge-transport properties. We use small- and wide-angle X-ray scattering (SAXS/WAXS) from a synchrotron source to elucidate the solution phase structures of these monodisperse noncovalent aggregates. We expect that a greater understanding of self-assembly using π-stacking and molecular designs that combine those features with hydrogen bonding and metal-ligand bonding could simplify the structure of the building blocks for artificial photosynthetic complexes, while retaining their ability to assemble complex, photofunctional structures.

UR - http://www.scopus.com/inward/record.url?scp=72949116749&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=72949116749&partnerID=8YFLogxK

U2 - 10.1021/ar9001735

DO - 10.1021/ar9001735

M3 - Article

C2 - 19803479

AN - SCOPUS:72949116749

VL - 42

SP - 1910

EP - 1921

JO - Accounts of Chemical Research

JF - Accounts of Chemical Research

SN - 0001-4842

IS - 12

ER -