### Abstract

A new approach to the fully self-consistent solution of the one-particle equations in a periodic solid within the Hohenberg-Kohn-Sham local-density-functional formalism is presented. The method is based on systematic extensions of non-self-consistent real-space techniques of Ellis, Painter, and collaborators and the self-consistent reciprocal-space methodologies of Chaney, Lin, Lafon, and co-workers. Specifically, our approach combines a discrete variational treatment of all potential terms (Coulomb, exchange, and correlation) arising from the superposition of spherical atomiclike overlapping charge densities, with a rapidly convergent three-dimensional Fourier series representation of all the multicenter potential terms that are not expressible by a superposition model. The basis set consists of the exact numerical valence orbitals obtained from a direct solution of the local-density atomic one-particle equations and (for increased variational freedom) virtual numerical atomic orbitals, charge-transfer (ion-pair) orbitals, and "free" Slater one-site functions. The initial crystal potential consists of a non-muffin-tin superposition potential, including nongradient free-electron correlation terms calculated beyond the random-phase approximation. The usual multicenter integrations encountered in the linear-combination-of-atomic-orbitals tight-binding formalism are avoided by calculating all the Hamiltonian and other matrix elements between Bloch states by three-dimensional numerical Diophantine integration. In the first stage of self-consistency, the atomic superposition potential and the corresponding numerical basis orbitals are modified simultaneously and nonlinearly by varying (iteratively) the atomic occupation numbers (on the basis of computed Brillouin-zone averaged band populations) so as to minimize the deviation, Δρ(r→), between the band charge density and the superposition charge density. This step produces the "best" atomic configuration within the superposition model for the crystal charge density and tends to remove all the sharp "localized" features in the function Δρ(r→) by allowing for intra-atomic charge redistribution to take place. In the second stage, the three-dimensional multicenter Poisson equation associated with Δρ(r→) through a Fourier series representation of Δρ(r→) is solved and solutions of the band problem are found using a self-consistent criterion on the Fourier coefficients of Δρ(r→). The calculated observables include the total crystal ground-state energy, equilibrium lattice constants, electronic pressure, x-ray scattering factors, and directional Compton profile. The efficiency and reliability of the method is illustrated by means of results obtained for some ground-state properties of diamond; comparisons are made with the predictions of other methods.

Original language | English |
---|---|

Pages (from-to) | 4716-4737 |

Number of pages | 22 |

Journal | Physical Review B |

Volume | 15 |

Issue number | 10 |

DOIs | |

Publication status | Published - 1977 |

### Fingerprint

### ASJC Scopus subject areas

- Condensed Matter Physics

### Cite this

**Self-consistent numerical-basis-set linear-combination-of-atomic-orbitals model for the study of solids in the local density formalism.** / Zunger, Alex; Freeman, Arthur J.

Research output: Contribution to journal › Article

*Physical Review B*, vol. 15, no. 10, pp. 4716-4737. https://doi.org/10.1103/PhysRevB.15.4716

}

TY - JOUR

T1 - Self-consistent numerical-basis-set linear-combination-of-atomic-orbitals model for the study of solids in the local density formalism

AU - Zunger, Alex

AU - Freeman, Arthur J

PY - 1977

Y1 - 1977

N2 - A new approach to the fully self-consistent solution of the one-particle equations in a periodic solid within the Hohenberg-Kohn-Sham local-density-functional formalism is presented. The method is based on systematic extensions of non-self-consistent real-space techniques of Ellis, Painter, and collaborators and the self-consistent reciprocal-space methodologies of Chaney, Lin, Lafon, and co-workers. Specifically, our approach combines a discrete variational treatment of all potential terms (Coulomb, exchange, and correlation) arising from the superposition of spherical atomiclike overlapping charge densities, with a rapidly convergent three-dimensional Fourier series representation of all the multicenter potential terms that are not expressible by a superposition model. The basis set consists of the exact numerical valence orbitals obtained from a direct solution of the local-density atomic one-particle equations and (for increased variational freedom) virtual numerical atomic orbitals, charge-transfer (ion-pair) orbitals, and "free" Slater one-site functions. The initial crystal potential consists of a non-muffin-tin superposition potential, including nongradient free-electron correlation terms calculated beyond the random-phase approximation. The usual multicenter integrations encountered in the linear-combination-of-atomic-orbitals tight-binding formalism are avoided by calculating all the Hamiltonian and other matrix elements between Bloch states by three-dimensional numerical Diophantine integration. In the first stage of self-consistency, the atomic superposition potential and the corresponding numerical basis orbitals are modified simultaneously and nonlinearly by varying (iteratively) the atomic occupation numbers (on the basis of computed Brillouin-zone averaged band populations) so as to minimize the deviation, Δρ(r→), between the band charge density and the superposition charge density. This step produces the "best" atomic configuration within the superposition model for the crystal charge density and tends to remove all the sharp "localized" features in the function Δρ(r→) by allowing for intra-atomic charge redistribution to take place. In the second stage, the three-dimensional multicenter Poisson equation associated with Δρ(r→) through a Fourier series representation of Δρ(r→) is solved and solutions of the band problem are found using a self-consistent criterion on the Fourier coefficients of Δρ(r→). The calculated observables include the total crystal ground-state energy, equilibrium lattice constants, electronic pressure, x-ray scattering factors, and directional Compton profile. The efficiency and reliability of the method is illustrated by means of results obtained for some ground-state properties of diamond; comparisons are made with the predictions of other methods.

AB - A new approach to the fully self-consistent solution of the one-particle equations in a periodic solid within the Hohenberg-Kohn-Sham local-density-functional formalism is presented. The method is based on systematic extensions of non-self-consistent real-space techniques of Ellis, Painter, and collaborators and the self-consistent reciprocal-space methodologies of Chaney, Lin, Lafon, and co-workers. Specifically, our approach combines a discrete variational treatment of all potential terms (Coulomb, exchange, and correlation) arising from the superposition of spherical atomiclike overlapping charge densities, with a rapidly convergent three-dimensional Fourier series representation of all the multicenter potential terms that are not expressible by a superposition model. The basis set consists of the exact numerical valence orbitals obtained from a direct solution of the local-density atomic one-particle equations and (for increased variational freedom) virtual numerical atomic orbitals, charge-transfer (ion-pair) orbitals, and "free" Slater one-site functions. The initial crystal potential consists of a non-muffin-tin superposition potential, including nongradient free-electron correlation terms calculated beyond the random-phase approximation. The usual multicenter integrations encountered in the linear-combination-of-atomic-orbitals tight-binding formalism are avoided by calculating all the Hamiltonian and other matrix elements between Bloch states by three-dimensional numerical Diophantine integration. In the first stage of self-consistency, the atomic superposition potential and the corresponding numerical basis orbitals are modified simultaneously and nonlinearly by varying (iteratively) the atomic occupation numbers (on the basis of computed Brillouin-zone averaged band populations) so as to minimize the deviation, Δρ(r→), between the band charge density and the superposition charge density. This step produces the "best" atomic configuration within the superposition model for the crystal charge density and tends to remove all the sharp "localized" features in the function Δρ(r→) by allowing for intra-atomic charge redistribution to take place. In the second stage, the three-dimensional multicenter Poisson equation associated with Δρ(r→) through a Fourier series representation of Δρ(r→) is solved and solutions of the band problem are found using a self-consistent criterion on the Fourier coefficients of Δρ(r→). The calculated observables include the total crystal ground-state energy, equilibrium lattice constants, electronic pressure, x-ray scattering factors, and directional Compton profile. The efficiency and reliability of the method is illustrated by means of results obtained for some ground-state properties of diamond; comparisons are made with the predictions of other methods.

UR - http://www.scopus.com/inward/record.url?scp=0012066693&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0012066693&partnerID=8YFLogxK

U2 - 10.1103/PhysRevB.15.4716

DO - 10.1103/PhysRevB.15.4716

M3 - Article

AN - SCOPUS:0012066693

VL - 15

SP - 4716

EP - 4737

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 10

ER -