Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Framework

In Soo Kim, Zhanyong Li, Jian Zheng, Ana E. Platero-Prats, Andreas Mavrandonakis, Steven Pellizzeri, Magali Ferrandon, Aleksei Vjunov, Leighanne C. Gallington, Thomas E. Webber, Nicolaas A. Vermeulen, R. Lee Penn, Rachel B. Getman, Christopher J. Cramer, Karena W. Chapman, Donald M. Camaioni, John L. Fulton, Johannes A. Lercher, Omar K. Farha, Joseph T HuppAlex B.F. Martinson

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

Original languageEnglish
Pages (from-to)909-913
Number of pages5
JournalAngewandte Chemie - International Edition
Volume57
Issue number4
DOIs
Publication statusPublished - Jan 22 2018

Fingerprint

Platinum
Catalyst supports
Atoms
Hydrogenation
Ethylene
X ray absorption spectroscopy
Atomic layer deposition
Precious metals
Zirconia
Density functional theory
Infrared spectroscopy
Catalyst activity
Sintering
Metals
Vapors
X rays
Catalysts
ethylene

Keywords

  • atomic layer deposition (ALD)
  • heterogeneous catalysis
  • metal–organic frameworks (MOFs)
  • platinum
  • sinter-resistance

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)

Cite this

Kim, I. S., Li, Z., Zheng, J., Platero-Prats, A. E., Mavrandonakis, A., Pellizzeri, S., ... Martinson, A. B. F. (2018). Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Framework. Angewandte Chemie - International Edition, 57(4), 909-913. https://doi.org/10.1002/anie.201708092

Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Framework. / Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E.; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C.; Webber, Thomas E.; Vermeulen, Nicolaas A.; Penn, R. Lee; Getman, Rachel B.; Cramer, Christopher J.; Chapman, Karena W.; Camaioni, Donald M.; Fulton, John L.; Lercher, Johannes A.; Farha, Omar K.; Hupp, Joseph T; Martinson, Alex B.F.

In: Angewandte Chemie - International Edition, Vol. 57, No. 4, 22.01.2018, p. 909-913.

Research output: Contribution to journalArticle

Kim, IS, Li, Z, Zheng, J, Platero-Prats, AE, Mavrandonakis, A, Pellizzeri, S, Ferrandon, M, Vjunov, A, Gallington, LC, Webber, TE, Vermeulen, NA, Penn, RL, Getman, RB, Cramer, CJ, Chapman, KW, Camaioni, DM, Fulton, JL, Lercher, JA, Farha, OK, Hupp, JT & Martinson, ABF 2018, 'Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Framework', Angewandte Chemie - International Edition, vol. 57, no. 4, pp. 909-913. https://doi.org/10.1002/anie.201708092
Kim IS, Li Z, Zheng J, Platero-Prats AE, Mavrandonakis A, Pellizzeri S et al. Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Framework. Angewandte Chemie - International Edition. 2018 Jan 22;57(4):909-913. https://doi.org/10.1002/anie.201708092
Kim, In Soo ; Li, Zhanyong ; Zheng, Jian ; Platero-Prats, Ana E. ; Mavrandonakis, Andreas ; Pellizzeri, Steven ; Ferrandon, Magali ; Vjunov, Aleksei ; Gallington, Leighanne C. ; Webber, Thomas E. ; Vermeulen, Nicolaas A. ; Penn, R. Lee ; Getman, Rachel B. ; Cramer, Christopher J. ; Chapman, Karena W. ; Camaioni, Donald M. ; Fulton, John L. ; Lercher, Johannes A. ; Farha, Omar K. ; Hupp, Joseph T ; Martinson, Alex B.F. / Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Framework. In: Angewandte Chemie - International Edition. 2018 ; Vol. 57, No. 4. pp. 909-913.
@article{81c07578650b488f80f220514d93abad,
title = "Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Framework",
abstract = "Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.",
keywords = "atomic layer deposition (ALD), heterogeneous catalysis, metal–organic frameworks (MOFs), platinum, sinter-resistance",
author = "Kim, {In Soo} and Zhanyong Li and Jian Zheng and Platero-Prats, {Ana E.} and Andreas Mavrandonakis and Steven Pellizzeri and Magali Ferrandon and Aleksei Vjunov and Gallington, {Leighanne C.} and Webber, {Thomas E.} and Vermeulen, {Nicolaas A.} and Penn, {R. Lee} and Getman, {Rachel B.} and Cramer, {Christopher J.} and Chapman, {Karena W.} and Camaioni, {Donald M.} and Fulton, {John L.} and Lercher, {Johannes A.} and Farha, {Omar K.} and Hupp, {Joseph T} and Martinson, {Alex B.F.}",
year = "2018",
month = "1",
day = "22",
doi = "10.1002/anie.201708092",
language = "English",
volume = "57",
pages = "909--913",
journal = "Angewandte Chemie - International Edition",
issn = "1433-7851",
publisher = "John Wiley and Sons Ltd",
number = "4",

}

TY - JOUR

T1 - Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Framework

AU - Kim, In Soo

AU - Li, Zhanyong

AU - Zheng, Jian

AU - Platero-Prats, Ana E.

AU - Mavrandonakis, Andreas

AU - Pellizzeri, Steven

AU - Ferrandon, Magali

AU - Vjunov, Aleksei

AU - Gallington, Leighanne C.

AU - Webber, Thomas E.

AU - Vermeulen, Nicolaas A.

AU - Penn, R. Lee

AU - Getman, Rachel B.

AU - Cramer, Christopher J.

AU - Chapman, Karena W.

AU - Camaioni, Donald M.

AU - Fulton, John L.

AU - Lercher, Johannes A.

AU - Farha, Omar K.

AU - Hupp, Joseph T

AU - Martinson, Alex B.F.

PY - 2018/1/22

Y1 - 2018/1/22

N2 - Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

AB - Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

KW - atomic layer deposition (ALD)

KW - heterogeneous catalysis

KW - metal–organic frameworks (MOFs)

KW - platinum

KW - sinter-resistance

UR - http://www.scopus.com/inward/record.url?scp=85039761733&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85039761733&partnerID=8YFLogxK

U2 - 10.1002/anie.201708092

DO - 10.1002/anie.201708092

M3 - Article

C2 - 29205697

AN - SCOPUS:85039761733

VL - 57

SP - 909

EP - 913

JO - Angewandte Chemie - International Edition

JF - Angewandte Chemie - International Edition

SN - 1433-7851

IS - 4

ER -