TY - JOUR
T1 - Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Framework
AU - Kim, In Soo
AU - Li, Zhanyong
AU - Zheng, Jian
AU - Platero-Prats, Ana E.
AU - Mavrandonakis, Andreas
AU - Pellizzeri, Steven
AU - Ferrandon, Magali
AU - Vjunov, Aleksei
AU - Gallington, Leighanne C.
AU - Webber, Thomas E.
AU - Vermeulen, Nicolaas A.
AU - Penn, R. Lee
AU - Getman, Rachel B.
AU - Cramer, Christopher J.
AU - Chapman, Karena W.
AU - Camaioni, Donald M.
AU - Fulton, John L.
AU - Lercher, Johannes A.
AU - Farha, Omar K.
AU - Hupp, Joseph T.
AU - Martinson, Alex B.F.
N1 - Funding Information:
Sinter-Resistant Platinum Catalyst Supported by Metal–Organic Framework
Publisher Copyright:
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2018/1/22
Y1 - 2018/1/22
N2 - Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.
AB - Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.
KW - atomic layer deposition (ALD)
KW - heterogeneous catalysis
KW - metal–organic frameworks (MOFs)
KW - platinum
KW - sinter-resistance
UR - http://www.scopus.com/inward/record.url?scp=85039761733&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85039761733&partnerID=8YFLogxK
U2 - 10.1002/anie.201708092
DO - 10.1002/anie.201708092
M3 - Article
C2 - 29205697
AN - SCOPUS:85039761733
VL - 57
SP - 909
EP - 913
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
SN - 1433-7851
IS - 4
ER -