Solution-processable low-molecular weight extended arylacetylenes: versatile p-type semiconductors for field-effect transistors and bulk heterojunction solar cells

Fabio Silvestri, Assunta Marrocchi, Mirko Seri, Choongik Kim, Tobin J Marks, Antonio Facchetti, Aldo Taticchi

Research output: Contribution to journalArticle

135 Citations (Scopus)

Abstract

We report the synthesis and characterization of a series of five extended arylacetylenes, 9,10-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-anthracene (A-P6t, 1), 9,10-bis-[(p-{[m,p-bis(hexyloxy) phenyl]ethynyl}phenyl)ethynyl]-anthracene (PA-P6t, 2), 4,7-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-2,1,3-benzothiadiazole (BTZ-P6t, 5), 4,7-bis(5-{[m,p-bis(hexyloxy)phenyl]ethynyl}thien-2-yl)-2,1,3- benzothiadiazole (TBTZ-P6t, 6), and 7,7′-({[m,p-bis(hexyloxy)phenyl] ethynyl}-2,1,3-benzothiadiazol-4,4′-ethynyl)-2,5-thiophene (BTZT-P6t, 7), and two arylvinylenes, 9,10-bis-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}-anthracene (A-P6d, 3), 9,10-bis-[(E)-(p-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}phenyl)vinyl]- anthracene (PA-P6d, 4). Trends in optical absorption spectra and electrochemical redox processes are first described. Next, the thin-film microstructures and morphologies of films deposited from solution under various conditions are investigated, and organic field-effect transistors (OFETs) and bulk heterojunction photovoltaic (OPV) cells fabricated. We find that substituting acetylenic for olefinic linkers on the molecular cores significantly enhances device performance. OFET measurements reveal that all seven of the semiconductors are FET-active and, depending on the backbone architecture, the arylacetylenes exhibit good p-type mobilities (- up to ∼0.1 cm2 V-1 s-1) when optimum film microstructural order is achieved. OPV cells using [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as the electron acceptor exhibit power conversion efficiencies (PCEs) up to 1.3% under a simulated AM 1.5 solar irradiation of 100 mW/cm2. These results demonstrate that arylacetylenes are promising hole-transport materials for p-channel OFETs and promising donors for organic solar cells applications. A direct correlation between OFET arylacetylene hole mobility and OPV performance is identified and analyzed.

Original languageEnglish
Pages (from-to)6108-6123
Number of pages16
JournalJournal of the American Chemical Society
Volume132
Issue number17
DOIs
Publication statusPublished - May 5 2010

Fingerprint

Organic field effect transistors
Semiconductors
Anthracene
Field effect transistors
Heterojunctions
Solar cells
Molecular Weight
Molecular weight
Semiconductor materials
Thiophenes
Hole mobility
Butyric acid
Photovoltaic cells
Thiophene
Light absorption
Conversion efficiency
Oxidation-Reduction
Absorption spectra
Esters
Irradiation

ASJC Scopus subject areas

  • Chemistry(all)
  • Catalysis
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this

Solution-processable low-molecular weight extended arylacetylenes : versatile p-type semiconductors for field-effect transistors and bulk heterojunction solar cells. / Silvestri, Fabio; Marrocchi, Assunta; Seri, Mirko; Kim, Choongik; Marks, Tobin J; Facchetti, Antonio; Taticchi, Aldo.

In: Journal of the American Chemical Society, Vol. 132, No. 17, 05.05.2010, p. 6108-6123.

Research output: Contribution to journalArticle

Silvestri, Fabio ; Marrocchi, Assunta ; Seri, Mirko ; Kim, Choongik ; Marks, Tobin J ; Facchetti, Antonio ; Taticchi, Aldo. / Solution-processable low-molecular weight extended arylacetylenes : versatile p-type semiconductors for field-effect transistors and bulk heterojunction solar cells. In: Journal of the American Chemical Society. 2010 ; Vol. 132, No. 17. pp. 6108-6123.
@article{2e58485dd8f04f96a696824a7fab3d0c,
title = "Solution-processable low-molecular weight extended arylacetylenes: versatile p-type semiconductors for field-effect transistors and bulk heterojunction solar cells",
abstract = "We report the synthesis and characterization of a series of five extended arylacetylenes, 9,10-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-anthracene (A-P6t, 1), 9,10-bis-[(p-{[m,p-bis(hexyloxy) phenyl]ethynyl}phenyl)ethynyl]-anthracene (PA-P6t, 2), 4,7-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-2,1,3-benzothiadiazole (BTZ-P6t, 5), 4,7-bis(5-{[m,p-bis(hexyloxy)phenyl]ethynyl}thien-2-yl)-2,1,3- benzothiadiazole (TBTZ-P6t, 6), and 7,7′-({[m,p-bis(hexyloxy)phenyl] ethynyl}-2,1,3-benzothiadiazol-4,4′-ethynyl)-2,5-thiophene (BTZT-P6t, 7), and two arylvinylenes, 9,10-bis-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}-anthracene (A-P6d, 3), 9,10-bis-[(E)-(p-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}phenyl)vinyl]- anthracene (PA-P6d, 4). Trends in optical absorption spectra and electrochemical redox processes are first described. Next, the thin-film microstructures and morphologies of films deposited from solution under various conditions are investigated, and organic field-effect transistors (OFETs) and bulk heterojunction photovoltaic (OPV) cells fabricated. We find that substituting acetylenic for olefinic linkers on the molecular cores significantly enhances device performance. OFET measurements reveal that all seven of the semiconductors are FET-active and, depending on the backbone architecture, the arylacetylenes exhibit good p-type mobilities (- up to ∼0.1 cm2 V-1 s-1) when optimum film microstructural order is achieved. OPV cells using [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as the electron acceptor exhibit power conversion efficiencies (PCEs) up to 1.3{\%} under a simulated AM 1.5 solar irradiation of 100 mW/cm2. These results demonstrate that arylacetylenes are promising hole-transport materials for p-channel OFETs and promising donors for organic solar cells applications. A direct correlation between OFET arylacetylene hole mobility and OPV performance is identified and analyzed.",
author = "Fabio Silvestri and Assunta Marrocchi and Mirko Seri and Choongik Kim and Marks, {Tobin J} and Antonio Facchetti and Aldo Taticchi",
year = "2010",
month = "5",
day = "5",
doi = "10.1021/ja910420t",
language = "English",
volume = "132",
pages = "6108--6123",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "17",

}

TY - JOUR

T1 - Solution-processable low-molecular weight extended arylacetylenes

T2 - versatile p-type semiconductors for field-effect transistors and bulk heterojunction solar cells

AU - Silvestri, Fabio

AU - Marrocchi, Assunta

AU - Seri, Mirko

AU - Kim, Choongik

AU - Marks, Tobin J

AU - Facchetti, Antonio

AU - Taticchi, Aldo

PY - 2010/5/5

Y1 - 2010/5/5

N2 - We report the synthesis and characterization of a series of five extended arylacetylenes, 9,10-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-anthracene (A-P6t, 1), 9,10-bis-[(p-{[m,p-bis(hexyloxy) phenyl]ethynyl}phenyl)ethynyl]-anthracene (PA-P6t, 2), 4,7-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-2,1,3-benzothiadiazole (BTZ-P6t, 5), 4,7-bis(5-{[m,p-bis(hexyloxy)phenyl]ethynyl}thien-2-yl)-2,1,3- benzothiadiazole (TBTZ-P6t, 6), and 7,7′-({[m,p-bis(hexyloxy)phenyl] ethynyl}-2,1,3-benzothiadiazol-4,4′-ethynyl)-2,5-thiophene (BTZT-P6t, 7), and two arylvinylenes, 9,10-bis-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}-anthracene (A-P6d, 3), 9,10-bis-[(E)-(p-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}phenyl)vinyl]- anthracene (PA-P6d, 4). Trends in optical absorption spectra and electrochemical redox processes are first described. Next, the thin-film microstructures and morphologies of films deposited from solution under various conditions are investigated, and organic field-effect transistors (OFETs) and bulk heterojunction photovoltaic (OPV) cells fabricated. We find that substituting acetylenic for olefinic linkers on the molecular cores significantly enhances device performance. OFET measurements reveal that all seven of the semiconductors are FET-active and, depending on the backbone architecture, the arylacetylenes exhibit good p-type mobilities (- up to ∼0.1 cm2 V-1 s-1) when optimum film microstructural order is achieved. OPV cells using [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as the electron acceptor exhibit power conversion efficiencies (PCEs) up to 1.3% under a simulated AM 1.5 solar irradiation of 100 mW/cm2. These results demonstrate that arylacetylenes are promising hole-transport materials for p-channel OFETs and promising donors for organic solar cells applications. A direct correlation between OFET arylacetylene hole mobility and OPV performance is identified and analyzed.

AB - We report the synthesis and characterization of a series of five extended arylacetylenes, 9,10-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-anthracene (A-P6t, 1), 9,10-bis-[(p-{[m,p-bis(hexyloxy) phenyl]ethynyl}phenyl)ethynyl]-anthracene (PA-P6t, 2), 4,7-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-2,1,3-benzothiadiazole (BTZ-P6t, 5), 4,7-bis(5-{[m,p-bis(hexyloxy)phenyl]ethynyl}thien-2-yl)-2,1,3- benzothiadiazole (TBTZ-P6t, 6), and 7,7′-({[m,p-bis(hexyloxy)phenyl] ethynyl}-2,1,3-benzothiadiazol-4,4′-ethynyl)-2,5-thiophene (BTZT-P6t, 7), and two arylvinylenes, 9,10-bis-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}-anthracene (A-P6d, 3), 9,10-bis-[(E)-(p-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}phenyl)vinyl]- anthracene (PA-P6d, 4). Trends in optical absorption spectra and electrochemical redox processes are first described. Next, the thin-film microstructures and morphologies of films deposited from solution under various conditions are investigated, and organic field-effect transistors (OFETs) and bulk heterojunction photovoltaic (OPV) cells fabricated. We find that substituting acetylenic for olefinic linkers on the molecular cores significantly enhances device performance. OFET measurements reveal that all seven of the semiconductors are FET-active and, depending on the backbone architecture, the arylacetylenes exhibit good p-type mobilities (- up to ∼0.1 cm2 V-1 s-1) when optimum film microstructural order is achieved. OPV cells using [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as the electron acceptor exhibit power conversion efficiencies (PCEs) up to 1.3% under a simulated AM 1.5 solar irradiation of 100 mW/cm2. These results demonstrate that arylacetylenes are promising hole-transport materials for p-channel OFETs and promising donors for organic solar cells applications. A direct correlation between OFET arylacetylene hole mobility and OPV performance is identified and analyzed.

UR - http://www.scopus.com/inward/record.url?scp=77951691284&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77951691284&partnerID=8YFLogxK

U2 - 10.1021/ja910420t

DO - 10.1021/ja910420t

M3 - Article

C2 - 20377189

AN - SCOPUS:77951691284

VL - 132

SP - 6108

EP - 6123

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 17

ER -