Structural stability, magnetism, and surface magneto-optic Kerr effect spectra of MnAg(001) surface alloys

Soon C. Hong, Miyoung Kim, Arthur J Freeman

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The stability of a MnAg surface alloy was investigated employing the total energy and atomic force full-potential linearized augmented plane wave method based on the local density approximation for: (i) a clean Ag(001), (ii) 1 ML Mn overlayer [1 Mn/Ag(001)], (iii) 1 and 2 ML MnAg alloys as overlayers on Ag(001) [1(MnAg)/Ag(001) and 2(MnAg)/Ag(001)], and (iv) 1 ML Mn diffused into Ag(001) substrate [Ag/1 Mn/Ag(001)]. Results obtained show that 2(MnAg)/Ag(001) is much more stable than 1 Mn/Ag(001) (by a large energy difference of 150 meV), whereas 1(MnAg)/Ag(001) is marginally more stable (by a slight energy difference of 8 meV) compared to a separate phase of Ag and Mn atoms. Surface Mn and subsurface Mn atoms in 2(MnAg)/Ag(001) were found to be coupled antiferromagnetically with magnetic moments of 3.96 and -3.55 μB, respectively. The surface corrugation (Δz=0.05 a.u.) of 2(MnAg)/Ag(001) was found to be much smaller than that (Δz=0.5 a.u.) of another magnetically stabilized surface alloy system, MnCu/Cu(001). No significant magneto-optical effects for antiferromagnetic Ag/Mn/Ag(001) were found due to the small off-diagonal elements of the optical conductivity.

Original languageEnglish
Pages (from-to)7016-7018
Number of pages3
JournalJournal of Applied Physics
Volume83
Issue number11
Publication statusPublished - 1998

Fingerprint

magneto-optics
structural stability
Kerr effects
atoms
energy
plane waves
magnetic moments
conductivity
approximation

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Structural stability, magnetism, and surface magneto-optic Kerr effect spectra of MnAg(001) surface alloys. / Hong, Soon C.; Kim, Miyoung; Freeman, Arthur J.

In: Journal of Applied Physics, Vol. 83, No. 11, 1998, p. 7016-7018.

Research output: Contribution to journalArticle

@article{20b79dcff56c4769880b6736f97a3066,
title = "Structural stability, magnetism, and surface magneto-optic Kerr effect spectra of MnAg(001) surface alloys",
abstract = "The stability of a MnAg surface alloy was investigated employing the total energy and atomic force full-potential linearized augmented plane wave method based on the local density approximation for: (i) a clean Ag(001), (ii) 1 ML Mn overlayer [1 Mn/Ag(001)], (iii) 1 and 2 ML MnAg alloys as overlayers on Ag(001) [1(MnAg)/Ag(001) and 2(MnAg)/Ag(001)], and (iv) 1 ML Mn diffused into Ag(001) substrate [Ag/1 Mn/Ag(001)]. Results obtained show that 2(MnAg)/Ag(001) is much more stable than 1 Mn/Ag(001) (by a large energy difference of 150 meV), whereas 1(MnAg)/Ag(001) is marginally more stable (by a slight energy difference of 8 meV) compared to a separate phase of Ag and Mn atoms. Surface Mn and subsurface Mn atoms in 2(MnAg)/Ag(001) were found to be coupled antiferromagnetically with magnetic moments of 3.96 and -3.55 μB, respectively. The surface corrugation (Δz=0.05 a.u.) of 2(MnAg)/Ag(001) was found to be much smaller than that (Δz=0.5 a.u.) of another magnetically stabilized surface alloy system, MnCu/Cu(001). No significant magneto-optical effects for antiferromagnetic Ag/Mn/Ag(001) were found due to the small off-diagonal elements of the optical conductivity.",
author = "Hong, {Soon C.} and Miyoung Kim and Freeman, {Arthur J}",
year = "1998",
language = "English",
volume = "83",
pages = "7016--7018",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "11",

}

TY - JOUR

T1 - Structural stability, magnetism, and surface magneto-optic Kerr effect spectra of MnAg(001) surface alloys

AU - Hong, Soon C.

AU - Kim, Miyoung

AU - Freeman, Arthur J

PY - 1998

Y1 - 1998

N2 - The stability of a MnAg surface alloy was investigated employing the total energy and atomic force full-potential linearized augmented plane wave method based on the local density approximation for: (i) a clean Ag(001), (ii) 1 ML Mn overlayer [1 Mn/Ag(001)], (iii) 1 and 2 ML MnAg alloys as overlayers on Ag(001) [1(MnAg)/Ag(001) and 2(MnAg)/Ag(001)], and (iv) 1 ML Mn diffused into Ag(001) substrate [Ag/1 Mn/Ag(001)]. Results obtained show that 2(MnAg)/Ag(001) is much more stable than 1 Mn/Ag(001) (by a large energy difference of 150 meV), whereas 1(MnAg)/Ag(001) is marginally more stable (by a slight energy difference of 8 meV) compared to a separate phase of Ag and Mn atoms. Surface Mn and subsurface Mn atoms in 2(MnAg)/Ag(001) were found to be coupled antiferromagnetically with magnetic moments of 3.96 and -3.55 μB, respectively. The surface corrugation (Δz=0.05 a.u.) of 2(MnAg)/Ag(001) was found to be much smaller than that (Δz=0.5 a.u.) of another magnetically stabilized surface alloy system, MnCu/Cu(001). No significant magneto-optical effects for antiferromagnetic Ag/Mn/Ag(001) were found due to the small off-diagonal elements of the optical conductivity.

AB - The stability of a MnAg surface alloy was investigated employing the total energy and atomic force full-potential linearized augmented plane wave method based on the local density approximation for: (i) a clean Ag(001), (ii) 1 ML Mn overlayer [1 Mn/Ag(001)], (iii) 1 and 2 ML MnAg alloys as overlayers on Ag(001) [1(MnAg)/Ag(001) and 2(MnAg)/Ag(001)], and (iv) 1 ML Mn diffused into Ag(001) substrate [Ag/1 Mn/Ag(001)]. Results obtained show that 2(MnAg)/Ag(001) is much more stable than 1 Mn/Ag(001) (by a large energy difference of 150 meV), whereas 1(MnAg)/Ag(001) is marginally more stable (by a slight energy difference of 8 meV) compared to a separate phase of Ag and Mn atoms. Surface Mn and subsurface Mn atoms in 2(MnAg)/Ag(001) were found to be coupled antiferromagnetically with magnetic moments of 3.96 and -3.55 μB, respectively. The surface corrugation (Δz=0.05 a.u.) of 2(MnAg)/Ag(001) was found to be much smaller than that (Δz=0.5 a.u.) of another magnetically stabilized surface alloy system, MnCu/Cu(001). No significant magneto-optical effects for antiferromagnetic Ag/Mn/Ag(001) were found due to the small off-diagonal elements of the optical conductivity.

UR - http://www.scopus.com/inward/record.url?scp=0001046263&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001046263&partnerID=8YFLogxK

M3 - Article

VL - 83

SP - 7016

EP - 7018

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 11

ER -