Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions.

T. O. Yeates, H. Komiya, A. Chirino, D. C. Rees, James Paul Allen, G. Feher

Research output: Contribution to journalArticle

288 Citations (Scopus)

Abstract

The three-dimensional structures of the cofactors and protein subunits of the reaction center (RC) from the carotenoidless mutant strain of Rhodobacter sphaeroides R-26 and the wild-type strain 2.4.1 have been determined by x-ray diffraction to resolutions of 2.8 A and 3.0 A with R values of 24% and 26%, respectively. The bacteriochlorophyll dimer (D), bacteriochlorophyll monomers (B), and bacteriopheophytin monomers (phi) form two branches, A and B, that are approximately related by a twofold symmetry axis. The cofactors are located in hydrophobic environments formed by the L and M subunits. Differences in the cofactor-protein interactions between the A and B cofactors, as well as between the corresponding cofactors of Rb, sphaeroides and Rhodopseudomonas viridis [Michel, H., Epp, O. & Deisenhofer, J. (1986) EMBO J. 3, 2445-2451], are delineated. The roles of several structural features in the preferential electron transfer along the A branch are discussed. Two bound detergent molecules of beta-octyl glucoside have been located near BA and BB. The environment of the carotenoid, C, that is present in RCs from Rb. sphaeroides 2.4.1 consists largely of aromatic residues of the M subunit. A role of BB in the triplet energy transfer from D to C and the reason for the preferential ease of removal of BB from the RC is proposed.

Original languageEnglish
Pages (from-to)7993-7997
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume85
Issue number21
Publication statusPublished - Nov 1988

Fingerprint

Bacteriochlorophylls
Rhodobacter sphaeroides
Carotenoids
Dilatation and Curettage
Energy Transfer
Protein Subunits
Detergents
Proteins
X-Rays
Electrons
bacteriopheophytin
octyl-beta-D-glucoside
fibrin fragment D

ASJC Scopus subject areas

  • General
  • Genetics

Cite this

@article{36e6c3e90ecd42a09c066ccb0cfaf53e,
title = "Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions.",
abstract = "The three-dimensional structures of the cofactors and protein subunits of the reaction center (RC) from the carotenoidless mutant strain of Rhodobacter sphaeroides R-26 and the wild-type strain 2.4.1 have been determined by x-ray diffraction to resolutions of 2.8 A and 3.0 A with R values of 24{\%} and 26{\%}, respectively. The bacteriochlorophyll dimer (D), bacteriochlorophyll monomers (B), and bacteriopheophytin monomers (phi) form two branches, A and B, that are approximately related by a twofold symmetry axis. The cofactors are located in hydrophobic environments formed by the L and M subunits. Differences in the cofactor-protein interactions between the A and B cofactors, as well as between the corresponding cofactors of Rb, sphaeroides and Rhodopseudomonas viridis [Michel, H., Epp, O. & Deisenhofer, J. (1986) EMBO J. 3, 2445-2451], are delineated. The roles of several structural features in the preferential electron transfer along the A branch are discussed. Two bound detergent molecules of beta-octyl glucoside have been located near BA and BB. The environment of the carotenoid, C, that is present in RCs from Rb. sphaeroides 2.4.1 consists largely of aromatic residues of the M subunit. A role of BB in the triplet energy transfer from D to C and the reason for the preferential ease of removal of BB from the RC is proposed.",
author = "Yeates, {T. O.} and H. Komiya and A. Chirino and Rees, {D. C.} and Allen, {James Paul} and G. Feher",
year = "1988",
month = "11",
language = "English",
volume = "85",
pages = "7993--7997",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "21",

}

TY - JOUR

T1 - Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1

T2 - protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions.

AU - Yeates, T. O.

AU - Komiya, H.

AU - Chirino, A.

AU - Rees, D. C.

AU - Allen, James Paul

AU - Feher, G.

PY - 1988/11

Y1 - 1988/11

N2 - The three-dimensional structures of the cofactors and protein subunits of the reaction center (RC) from the carotenoidless mutant strain of Rhodobacter sphaeroides R-26 and the wild-type strain 2.4.1 have been determined by x-ray diffraction to resolutions of 2.8 A and 3.0 A with R values of 24% and 26%, respectively. The bacteriochlorophyll dimer (D), bacteriochlorophyll monomers (B), and bacteriopheophytin monomers (phi) form two branches, A and B, that are approximately related by a twofold symmetry axis. The cofactors are located in hydrophobic environments formed by the L and M subunits. Differences in the cofactor-protein interactions between the A and B cofactors, as well as between the corresponding cofactors of Rb, sphaeroides and Rhodopseudomonas viridis [Michel, H., Epp, O. & Deisenhofer, J. (1986) EMBO J. 3, 2445-2451], are delineated. The roles of several structural features in the preferential electron transfer along the A branch are discussed. Two bound detergent molecules of beta-octyl glucoside have been located near BA and BB. The environment of the carotenoid, C, that is present in RCs from Rb. sphaeroides 2.4.1 consists largely of aromatic residues of the M subunit. A role of BB in the triplet energy transfer from D to C and the reason for the preferential ease of removal of BB from the RC is proposed.

AB - The three-dimensional structures of the cofactors and protein subunits of the reaction center (RC) from the carotenoidless mutant strain of Rhodobacter sphaeroides R-26 and the wild-type strain 2.4.1 have been determined by x-ray diffraction to resolutions of 2.8 A and 3.0 A with R values of 24% and 26%, respectively. The bacteriochlorophyll dimer (D), bacteriochlorophyll monomers (B), and bacteriopheophytin monomers (phi) form two branches, A and B, that are approximately related by a twofold symmetry axis. The cofactors are located in hydrophobic environments formed by the L and M subunits. Differences in the cofactor-protein interactions between the A and B cofactors, as well as between the corresponding cofactors of Rb, sphaeroides and Rhodopseudomonas viridis [Michel, H., Epp, O. & Deisenhofer, J. (1986) EMBO J. 3, 2445-2451], are delineated. The roles of several structural features in the preferential electron transfer along the A branch are discussed. Two bound detergent molecules of beta-octyl glucoside have been located near BA and BB. The environment of the carotenoid, C, that is present in RCs from Rb. sphaeroides 2.4.1 consists largely of aromatic residues of the M subunit. A role of BB in the triplet energy transfer from D to C and the reason for the preferential ease of removal of BB from the RC is proposed.

UR - http://www.scopus.com/inward/record.url?scp=0024110444&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024110444&partnerID=8YFLogxK

M3 - Article

C2 - 3186702

AN - SCOPUS:0024110444

VL - 85

SP - 7993

EP - 7997

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 21

ER -