TY - JOUR
T1 - Substitution of the D1-Asn87 site in photosystem II of cyanobacteria mimics the chloride-binding characteristics of spinach photosystem II
AU - Banerjee, Gourab
AU - Ghosh, Ipsita
AU - Kim, Christopher J.
AU - Debus, Richard J.
AU - Brudvig, Gary W.
N1 - Funding Information:
This work was supported by grants from the Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences. Oxygen-release and EPR studies were supported by Grant DE-FG02-05ER15646 (to G. W. B.). Mutant construction, whole cell fluorescence measurements, and FTIR studies were supported by Grant DE-SC0005291 (to R. J. D.). The authors declare that they have no conflicts of interest with the contents of this article.
PY - 2018/2/16
Y1 - 2018/2/16
N2 - Photoinduced water oxidation at the O2-evolving complex (OEC) of photosystem II (PSII) is a complex process involving a tetramanganese-calcium cluster that is surrounded by a hydrogen-bonded network of water molecules, chloride ions, and amino acid residues. Although the structure of the OEC has remained conserved over eons of evolution, significant differences in the chloride-binding characteristics exist between cyanobacteria and higher plants. An analysis of amino acid residues in and around the OEC has identified residue 87 in the D1 subunit as the only significant difference between PSII in cyanobacteria and higher plants. We substituted the D1-Asn87 residue in the cyanobacterium Synechocystis sp. PCC 6803 (wildtype) with alanine, present in higher plants, or with aspartic acid. We studied PSII core complexes purified from D1-N87A and D1-N87D variant strains to probe the function of the D1-Asn87 residue in the water-oxidation mechanism. EPR spectra of the S2 state and flash-induced FTIR spectra of both D1-N87A and D1-N87D PSII core complexes exhibited characteristics similar to those of wildtype Synechocystis PSII core complexes. However, flash-induced O2-evolution studies revealed a decreased cycling efficiency of the D1-N87D variant, whereas the cycling efficiency of the D1-N87A PSII variant was similar to that of wildtype PSII. Steady-state O2-evolution activity assays revealed that substitution of the D1 residue at position 87 with alanine perturbs the chloride-binding site in the proton-exit channel. These findings provide new insight into the role of the D1-Asn87 site in the water-oxidation mechanism and explain the difference in the chloride-binding properties of cyanobacterial and higher-plant PSII.
AB - Photoinduced water oxidation at the O2-evolving complex (OEC) of photosystem II (PSII) is a complex process involving a tetramanganese-calcium cluster that is surrounded by a hydrogen-bonded network of water molecules, chloride ions, and amino acid residues. Although the structure of the OEC has remained conserved over eons of evolution, significant differences in the chloride-binding characteristics exist between cyanobacteria and higher plants. An analysis of amino acid residues in and around the OEC has identified residue 87 in the D1 subunit as the only significant difference between PSII in cyanobacteria and higher plants. We substituted the D1-Asn87 residue in the cyanobacterium Synechocystis sp. PCC 6803 (wildtype) with alanine, present in higher plants, or with aspartic acid. We studied PSII core complexes purified from D1-N87A and D1-N87D variant strains to probe the function of the D1-Asn87 residue in the water-oxidation mechanism. EPR spectra of the S2 state and flash-induced FTIR spectra of both D1-N87A and D1-N87D PSII core complexes exhibited characteristics similar to those of wildtype Synechocystis PSII core complexes. However, flash-induced O2-evolution studies revealed a decreased cycling efficiency of the D1-N87D variant, whereas the cycling efficiency of the D1-N87A PSII variant was similar to that of wildtype PSII. Steady-state O2-evolution activity assays revealed that substitution of the D1 residue at position 87 with alanine perturbs the chloride-binding site in the proton-exit channel. These findings provide new insight into the role of the D1-Asn87 site in the water-oxidation mechanism and explain the difference in the chloride-binding properties of cyanobacterial and higher-plant PSII.
UR - http://www.scopus.com/inward/record.url?scp=85042191183&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042191183&partnerID=8YFLogxK
U2 - 10.1074/jbc.M117.813170
DO - 10.1074/jbc.M117.813170
M3 - Article
C2 - 29263091
AN - SCOPUS:85042191183
VL - 293
SP - 2487
EP - 2497
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 7
ER -