31P solid state NMR studies of metal selenophosphates containing [P2Se6]4-, [P4Se10]4-, [PSe4]3-, [P2Se7]4-, and [P2Se9]4- ligands

Christian G. Canlas, Mercouri G Kanatzidis, David P. Weliky

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

31P solid-state nuclear magnetic resonance (NMR) spectra of 12 metal-containing selenophosphates have been examined to distinguish between the [P2Se6]4-, [PSe4]3-, [P4Se10]4-, [P2Se7]4-, and [P2Se9]4- anions. There is a general correlation between the chemical shifts (CSs) of anions and the presence of a P-P bond. The [P2Se6]4- and [P4Se10]4- anions both contain a P-P bond and resonate between 25 and 95 ppm whereas the [PSe4]3-, [P2Se7]4-, and [P2Se9]4- anions do not contain a P-P bond and resonate between -115 and -30 ppm. The chemical shift anisotropies (CSAs) of compounds containing [PSe4]3- anions are less than 80 ppm, which is significantly smaller than the CSAs of any of the other anions (range: 135-275 ppm). The smaller CSAs of the [PSe4]3- anion are likely due to the unique local tetrahedral symmetry of this anion. Spin-lattice relaxation times (T1) have been determined for the solid compounds and vary between 20 and 3000 s. Unlike the CS, T1 does not appear to correlate with P-P bonding. 31P NMR is also shown to be a good method for impurity detection and identification in the solid compounds. The results of this study suggest that 31P NMR will be a useful tool for anion identification and quantitation in high-temperature melts.

Original languageEnglish
Pages (from-to)3399-3405
Number of pages7
JournalInorganic Chemistry
Volume42
Issue number11
DOIs
Publication statusPublished - Jun 2 2003

Fingerprint

Anions
Metals
Nuclear magnetic resonance
anions
Ligands
solid state
nuclear magnetic resonance
ligands
Chemical shift
chemical equilibrium
metals
Anisotropy
anisotropy
selenophosphate
Spin-lattice relaxation
spin-lattice relaxation
Relaxation time
relaxation time
Impurities
impurities

ASJC Scopus subject areas

  • Inorganic Chemistry

Cite this

31P solid state NMR studies of metal selenophosphates containing [P2Se6]4-, [P4Se10]4-, [PSe4]3-, [P2Se7]4-, and [P2Se9]4- ligands. / Canlas, Christian G.; Kanatzidis, Mercouri G; Weliky, David P.

In: Inorganic Chemistry, Vol. 42, No. 11, 02.06.2003, p. 3399-3405.

Research output: Contribution to journalArticle

@article{36105f4e6f1d4a69bdb4c80faa4070d0,
title = "31P solid state NMR studies of metal selenophosphates containing [P2Se6]4-, [P4Se10]4-, [PSe4]3-, [P2Se7]4-, and [P2Se9]4- ligands",
abstract = "31P solid-state nuclear magnetic resonance (NMR) spectra of 12 metal-containing selenophosphates have been examined to distinguish between the [P2Se6]4-, [PSe4]3-, [P4Se10]4-, [P2Se7]4-, and [P2Se9]4- anions. There is a general correlation between the chemical shifts (CSs) of anions and the presence of a P-P bond. The [P2Se6]4- and [P4Se10]4- anions both contain a P-P bond and resonate between 25 and 95 ppm whereas the [PSe4]3-, [P2Se7]4-, and [P2Se9]4- anions do not contain a P-P bond and resonate between -115 and -30 ppm. The chemical shift anisotropies (CSAs) of compounds containing [PSe4]3- anions are less than 80 ppm, which is significantly smaller than the CSAs of any of the other anions (range: 135-275 ppm). The smaller CSAs of the [PSe4]3- anion are likely due to the unique local tetrahedral symmetry of this anion. Spin-lattice relaxation times (T1) have been determined for the solid compounds and vary between 20 and 3000 s. Unlike the CS, T1 does not appear to correlate with P-P bonding. 31P NMR is also shown to be a good method for impurity detection and identification in the solid compounds. The results of this study suggest that 31P NMR will be a useful tool for anion identification and quantitation in high-temperature melts.",
author = "Canlas, {Christian G.} and Kanatzidis, {Mercouri G} and Weliky, {David P.}",
year = "2003",
month = "6",
day = "2",
doi = "10.1021/ic025946j",
language = "English",
volume = "42",
pages = "3399--3405",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "11",

}

TY - JOUR

T1 - 31P solid state NMR studies of metal selenophosphates containing [P2Se6]4-, [P4Se10]4-, [PSe4]3-, [P2Se7]4-, and [P2Se9]4- ligands

AU - Canlas, Christian G.

AU - Kanatzidis, Mercouri G

AU - Weliky, David P.

PY - 2003/6/2

Y1 - 2003/6/2

N2 - 31P solid-state nuclear magnetic resonance (NMR) spectra of 12 metal-containing selenophosphates have been examined to distinguish between the [P2Se6]4-, [PSe4]3-, [P4Se10]4-, [P2Se7]4-, and [P2Se9]4- anions. There is a general correlation between the chemical shifts (CSs) of anions and the presence of a P-P bond. The [P2Se6]4- and [P4Se10]4- anions both contain a P-P bond and resonate between 25 and 95 ppm whereas the [PSe4]3-, [P2Se7]4-, and [P2Se9]4- anions do not contain a P-P bond and resonate between -115 and -30 ppm. The chemical shift anisotropies (CSAs) of compounds containing [PSe4]3- anions are less than 80 ppm, which is significantly smaller than the CSAs of any of the other anions (range: 135-275 ppm). The smaller CSAs of the [PSe4]3- anion are likely due to the unique local tetrahedral symmetry of this anion. Spin-lattice relaxation times (T1) have been determined for the solid compounds and vary between 20 and 3000 s. Unlike the CS, T1 does not appear to correlate with P-P bonding. 31P NMR is also shown to be a good method for impurity detection and identification in the solid compounds. The results of this study suggest that 31P NMR will be a useful tool for anion identification and quantitation in high-temperature melts.

AB - 31P solid-state nuclear magnetic resonance (NMR) spectra of 12 metal-containing selenophosphates have been examined to distinguish between the [P2Se6]4-, [PSe4]3-, [P4Se10]4-, [P2Se7]4-, and [P2Se9]4- anions. There is a general correlation between the chemical shifts (CSs) of anions and the presence of a P-P bond. The [P2Se6]4- and [P4Se10]4- anions both contain a P-P bond and resonate between 25 and 95 ppm whereas the [PSe4]3-, [P2Se7]4-, and [P2Se9]4- anions do not contain a P-P bond and resonate between -115 and -30 ppm. The chemical shift anisotropies (CSAs) of compounds containing [PSe4]3- anions are less than 80 ppm, which is significantly smaller than the CSAs of any of the other anions (range: 135-275 ppm). The smaller CSAs of the [PSe4]3- anion are likely due to the unique local tetrahedral symmetry of this anion. Spin-lattice relaxation times (T1) have been determined for the solid compounds and vary between 20 and 3000 s. Unlike the CS, T1 does not appear to correlate with P-P bonding. 31P NMR is also shown to be a good method for impurity detection and identification in the solid compounds. The results of this study suggest that 31P NMR will be a useful tool for anion identification and quantitation in high-temperature melts.

UR - http://www.scopus.com/inward/record.url?scp=0038017020&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0038017020&partnerID=8YFLogxK

U2 - 10.1021/ic025946j

DO - 10.1021/ic025946j

M3 - Article

C2 - 12767173

AN - SCOPUS:0038017020

VL - 42

SP - 3399

EP - 3405

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 11

ER -