Supercomputing and supercomputers for science and engineering in general and for chemistry and biosciences in particular

E. Clementi, S. Chin, G. Corongiu, J. H. Detrich, M. Dupuis, D. Folsom, G. C. Lie, D. Logan, V. Sonnad

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


We start by pointing out relationships between production of information, global simulation, and supercomputing, thus placing our research activities in today's society context. Then we detail the evolution in hardware and software for 1CAP, our experimental supercomputer, which we claim to be especially well suited for supercomputing in science and engineering. A preliminary discussion of 1CAP/3090 (our latest experimental effort) is included. Many examples from different disciplines are provided to verify our assertions. We “prove” our point by presenting an example of global supercomputing. Starting with 3 nuclei and 10 electrons, building up to a single water molecule, then to a few hundred, we learn, for example, about Raman, infrared, and neutron scattering; we then move up to a few hundred thousand molecules to analyze particle flow and obstructions; finally we experiment, but only preliminarily, with a few million particles to learn more on nonequilibrium dynamics as in the Rayleigh‐Benard systems. In this way, quantum mechanics is overlapped with statistical mechanics and expanded into microdynamics. The entire paper is finally reanalyzed from a different perspective, presenting rather systematically, even if most briefly, our ideas on “modern” computational chemistry, where quantum mechanics is as much needed as fluid dynamics and graphics. In this section the main computational techniques are analyzed in terms of computer programs and their associated flow diagrams to solve the basic equations using parallel supercomputers.

Original languageEnglish
Pages (from-to)3-89
Number of pages87
JournalInternational Journal of Quantum Chemistry
Issue number1
Publication statusPublished - Jan 1989

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Supercomputing and supercomputers for science and engineering in general and for chemistry and biosciences in particular'. Together they form a unique fingerprint.

Cite this