Supported organoactinide complexes as heterogeneous catalysts. A kinetic and mechanistic study of facile arene hydrogenation

Moris S. Eisen, Tobin J Marks

Research output: Contribution to journalArticle

78 Citations (Scopus)

Abstract

This contribution reports a kinetic and mechanistic study of arene hydrogenation by the supported organoactinide complexes Cp′Th(benzyl)3/DA (1/DA), Th(1,3,5-CH2C6H3Me2)4/DA (2/DA), and Th(η3-allyl)4/DA (3/DA) where Cp′ = η5-Me5C5 and DA = dehydroxylated γ-alumina. In slurry reactions (90 °C, PH2 = 180 psi), the activity for benzene hydrogenation follows the order I/DA <2/DA <3/DA with an Nt value for 3/DA of ∼ 25 000 h-1 active site-1. This approaches or exceeds most conventional platinum metal catalysts in efficacy for benzene reduction. Benzene hydrogenation by 3/DA at 90 °C, PH2 = 180 psi, follows the rate law Nt = v[benzene]0[PH2]1 with Nt(H2)/Nt(D2) = 3.5 ± 0.3 and Ea = 16.7 ± 0.3 kcal mol-1. Partially hydrogenation products cannot be detected at partial conversions, and there is no D2 incorporated in the unconverted benzene. D2 is not delivered to a single benzene face, but rather a 1:3 mixture of all-cis and cis,cis,trans,cis,trans isotopomers is formed. Active site characterizations using D2O poisoning, hydrogenolysis, and CH3Cl dosing indicate that ≤8 ± 1% of the Th surface sites are responsible for the bulk of the benzene hydrogenation. EPR and XPS studies provide no evidence for surface Th oxidation states less than +4. As a function of arene, the relative rates of Th(η3-C3H5)4/DA-catalyzed hydrogenation are benzene > toluene > p-xylene > naphthalene, with the regiochemistry of p-xylene reduction similar to that for benzene. Experiments with 1:1 benzene-p-xylene mixtures reveal that benzene is preferentially hydrogenated with almost complete exclusion of p-xylene (∼97:3), inferring that the benzene binding constant to the active sites is ∼ 6.7× that of p-xylene. It is possible to propose a mechanism for arene hydrogenation which involves single Th(IV) sites, includes inoperativity of oxidation addition/reductive elimination sequences, and passes among established metal-ligand structures via precedented pathways.

Original languageEnglish
Pages (from-to)10358-10368
Number of pages11
JournalJournal of the American Chemical Society
Volume114
Issue number26
Publication statusPublished - 1992

Fingerprint

Hydrogenation
Xylene
Benzene
Catalysts
Kinetics
Aluminum Oxide
Toluene
Naphthalene
Catalytic Domain
Alumina
Metals
Ligands
4-xylene
Oxidation
Experiments

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

@article{a6eb2f1b8454431d8868b08edfbe59a3,
title = "Supported organoactinide complexes as heterogeneous catalysts. A kinetic and mechanistic study of facile arene hydrogenation",
abstract = "This contribution reports a kinetic and mechanistic study of arene hydrogenation by the supported organoactinide complexes Cp′Th(benzyl)3/DA (1/DA), Th(1,3,5-CH2C6H3Me2)4/DA (2/DA), and Th(η3-allyl)4/DA (3/DA) where Cp′ = η5-Me5C5 and DA = dehydroxylated γ-alumina. In slurry reactions (90 °C, PH2 = 180 psi), the activity for benzene hydrogenation follows the order I/DA <2/DA <3/DA with an Nt value for 3/DA of ∼ 25 000 h-1 active site-1. This approaches or exceeds most conventional platinum metal catalysts in efficacy for benzene reduction. Benzene hydrogenation by 3/DA at 90 °C, PH2 = 180 psi, follows the rate law Nt = v[benzene]0[PH2]1 with Nt(H2)/Nt(D2) = 3.5 ± 0.3 and Ea = 16.7 ± 0.3 kcal mol-1. Partially hydrogenation products cannot be detected at partial conversions, and there is no D2 incorporated in the unconverted benzene. D2 is not delivered to a single benzene face, but rather a 1:3 mixture of all-cis and cis,cis,trans,cis,trans isotopomers is formed. Active site characterizations using D2O poisoning, hydrogenolysis, and CH3Cl dosing indicate that ≤8 ± 1{\%} of the Th surface sites are responsible for the bulk of the benzene hydrogenation. EPR and XPS studies provide no evidence for surface Th oxidation states less than +4. As a function of arene, the relative rates of Th(η3-C3H5)4/DA-catalyzed hydrogenation are benzene > toluene > p-xylene > naphthalene, with the regiochemistry of p-xylene reduction similar to that for benzene. Experiments with 1:1 benzene-p-xylene mixtures reveal that benzene is preferentially hydrogenated with almost complete exclusion of p-xylene (∼97:3), inferring that the benzene binding constant to the active sites is ∼ 6.7× that of p-xylene. It is possible to propose a mechanism for arene hydrogenation which involves single Th(IV) sites, includes inoperativity of oxidation addition/reductive elimination sequences, and passes among established metal-ligand structures via precedented pathways.",
author = "Eisen, {Moris S.} and Marks, {Tobin J}",
year = "1992",
language = "English",
volume = "114",
pages = "10358--10368",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "26",

}

TY - JOUR

T1 - Supported organoactinide complexes as heterogeneous catalysts. A kinetic and mechanistic study of facile arene hydrogenation

AU - Eisen, Moris S.

AU - Marks, Tobin J

PY - 1992

Y1 - 1992

N2 - This contribution reports a kinetic and mechanistic study of arene hydrogenation by the supported organoactinide complexes Cp′Th(benzyl)3/DA (1/DA), Th(1,3,5-CH2C6H3Me2)4/DA (2/DA), and Th(η3-allyl)4/DA (3/DA) where Cp′ = η5-Me5C5 and DA = dehydroxylated γ-alumina. In slurry reactions (90 °C, PH2 = 180 psi), the activity for benzene hydrogenation follows the order I/DA <2/DA <3/DA with an Nt value for 3/DA of ∼ 25 000 h-1 active site-1. This approaches or exceeds most conventional platinum metal catalysts in efficacy for benzene reduction. Benzene hydrogenation by 3/DA at 90 °C, PH2 = 180 psi, follows the rate law Nt = v[benzene]0[PH2]1 with Nt(H2)/Nt(D2) = 3.5 ± 0.3 and Ea = 16.7 ± 0.3 kcal mol-1. Partially hydrogenation products cannot be detected at partial conversions, and there is no D2 incorporated in the unconverted benzene. D2 is not delivered to a single benzene face, but rather a 1:3 mixture of all-cis and cis,cis,trans,cis,trans isotopomers is formed. Active site characterizations using D2O poisoning, hydrogenolysis, and CH3Cl dosing indicate that ≤8 ± 1% of the Th surface sites are responsible for the bulk of the benzene hydrogenation. EPR and XPS studies provide no evidence for surface Th oxidation states less than +4. As a function of arene, the relative rates of Th(η3-C3H5)4/DA-catalyzed hydrogenation are benzene > toluene > p-xylene > naphthalene, with the regiochemistry of p-xylene reduction similar to that for benzene. Experiments with 1:1 benzene-p-xylene mixtures reveal that benzene is preferentially hydrogenated with almost complete exclusion of p-xylene (∼97:3), inferring that the benzene binding constant to the active sites is ∼ 6.7× that of p-xylene. It is possible to propose a mechanism for arene hydrogenation which involves single Th(IV) sites, includes inoperativity of oxidation addition/reductive elimination sequences, and passes among established metal-ligand structures via precedented pathways.

AB - This contribution reports a kinetic and mechanistic study of arene hydrogenation by the supported organoactinide complexes Cp′Th(benzyl)3/DA (1/DA), Th(1,3,5-CH2C6H3Me2)4/DA (2/DA), and Th(η3-allyl)4/DA (3/DA) where Cp′ = η5-Me5C5 and DA = dehydroxylated γ-alumina. In slurry reactions (90 °C, PH2 = 180 psi), the activity for benzene hydrogenation follows the order I/DA <2/DA <3/DA with an Nt value for 3/DA of ∼ 25 000 h-1 active site-1. This approaches or exceeds most conventional platinum metal catalysts in efficacy for benzene reduction. Benzene hydrogenation by 3/DA at 90 °C, PH2 = 180 psi, follows the rate law Nt = v[benzene]0[PH2]1 with Nt(H2)/Nt(D2) = 3.5 ± 0.3 and Ea = 16.7 ± 0.3 kcal mol-1. Partially hydrogenation products cannot be detected at partial conversions, and there is no D2 incorporated in the unconverted benzene. D2 is not delivered to a single benzene face, but rather a 1:3 mixture of all-cis and cis,cis,trans,cis,trans isotopomers is formed. Active site characterizations using D2O poisoning, hydrogenolysis, and CH3Cl dosing indicate that ≤8 ± 1% of the Th surface sites are responsible for the bulk of the benzene hydrogenation. EPR and XPS studies provide no evidence for surface Th oxidation states less than +4. As a function of arene, the relative rates of Th(η3-C3H5)4/DA-catalyzed hydrogenation are benzene > toluene > p-xylene > naphthalene, with the regiochemistry of p-xylene reduction similar to that for benzene. Experiments with 1:1 benzene-p-xylene mixtures reveal that benzene is preferentially hydrogenated with almost complete exclusion of p-xylene (∼97:3), inferring that the benzene binding constant to the active sites is ∼ 6.7× that of p-xylene. It is possible to propose a mechanism for arene hydrogenation which involves single Th(IV) sites, includes inoperativity of oxidation addition/reductive elimination sequences, and passes among established metal-ligand structures via precedented pathways.

UR - http://www.scopus.com/inward/record.url?scp=0000905257&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000905257&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0000905257

VL - 114

SP - 10358

EP - 10368

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 26

ER -