Surface chemistry of methyl radicals on OTMo(100) surfaces

Seong Han Kim, Peter C. Stair

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

The chemistry of CH3 radicals on oxygen-modified Mo(100) surfaces (O/Mo(100)) has been studied using temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). Gas-phase CH3 radicals were produced by pyrolysis of azomethane and dosed on O/Mo(100) at a surface temperature of 320 K. In TPD, O/Mo(100) with θO = 1.4 monolayer (ML) produces exclusively CH4 and CO, but O/Mo(100) with θo = 0.9 and 0.4 ML produce significant amounts of C2+ alkenes in addition to CH4 and CO. HREELS shows that the CH3 groups are bound to surface Mo atoms, not to surface oxygen. On 1.4 ML-O, the CH3 groups are stable at 320 K and have a symmetry lower than C. On 0.9 ML-O and 0.4 ML-O, some CH3 groups decompose to methylene groups, which react with intact CH3 groups to form surface alkyl groups. The surface species at 320 K appear to be controlled by the preadsorbed oxygen coverage, depending on whether θo ≤ 1 ML or θo > 1 ML. CH4 is formed via hydrogenation of CH3 groups by surface hydrogen that is a product of CH3 decomposition. C2+ alkene products are formed by β-hydrogen elimination of surface alkyl groups. When atomic iodine is coadsorbed on O/Mo(100), the alkene yield in TPD is significantly reduced.

Original languageEnglish
Pages (from-to)3035-3043
Number of pages9
JournalJournal of Physical Chemistry B
Volume104
Issue number14
DOIs
Publication statusPublished - Apr 13 2000

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Surface chemistry of methyl radicals on OTMo(100) surfaces'. Together they form a unique fingerprint.

  • Cite this