Surface-confined assemblies and polymers for molecular logic

Graham De Ruiter, Milko van der Boom

Research output: Contribution to journalArticle

163 Citations (Scopus)

Abstract

Stimuli responsive materials are capable of mimicking the operation characteristics of logic gates such as AND, OR, NOR, and even flip-flops. Since the development of molecular sensors and the introduction of the first AND gate in solution by de Silva in 1993, Molecular (Boolean) Logic and Computing (MBLC) has become increasingly popular. In this Account, we present recent research activities that focus on MBLC with electrochromic polymers and metal polypyridyl complexes on a solid support.Metal polypyridyl complexes act as useful sensors to a variety of analytes in solution (i.e., H2O, Fe2+/3+, Cr6+, NO+) and in the gas phase (NOx in air). This information transfer, whether the analyte is present, is based on the reversible redox chemistry of the metal complexes, which are stable up to 200 °C in air. The concurrent changes in the optical properties are nondestructive and fast. In such a setup, the input is directly related to the output and, therefore, can be represented by one-input logic gates. These input-output relationships are extendable for mimicking the diverse functions of essential molecular logic gates and circuits within a set of Boolean algebraic operations. Such a molecular approach towards Boolean logic has yielded a series of proof-of-concept devices: logic gates, multiplexers, half-adders, and flip-flop logic circuits.MBLC is a versatile and, potentially, a parallel approach to silicon circuits: assemblies of these molecular gates can perform a wide variety of logic tasks through reconfiguration of their inputs. Although these developments do not require a semiconductor blueprint, similar guidelines such as signal propagation, gate-to-gate communication, propagation delay, and combinatorial and sequential logic will play a critical role in allowing this field to mature. For instance, gate-to-gate communication by chemical wiring of the gates with metal ions as electron carriers results in the integration of stand-alone systems: the output of one gate is used as the input for another gate. Using the same setup, we were able to display both combinatorial and sequential logic.We have demonstrated MBLC by coupling electrochemical inputs with optical readout, which resulted in various logic architectures built on a redox-active, functionalized surface. Electrochemically operated sequential logic systems such as flip-flops, multivalued logic, and multistate memory could enhance computational power without increasing spatial requirements. Applying multivalued digits in data storage could exponentially increase memory capacity. Furthermore, we evaluate the pros and cons of MBLC and identify targets for future research in this Account.

Original languageEnglish
Pages (from-to)563-573
Number of pages11
JournalAccounts of Chemical Research
Volume44
Issue number8
DOIs
Publication statusPublished - Aug 16 2011

Fingerprint

Logic gates
Flip flop circuits
Polymers
Logic circuits
Metal complexes
Data storage equipment
Many valued logics
Blueprints
Coordination Complexes
Communication
Adders
Sensors
Silicon
Electric wiring
Air
Metal ions
Optical properties
Gases
Semiconductor materials
Electrons

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Surface-confined assemblies and polymers for molecular logic. / De Ruiter, Graham; van der Boom, Milko.

In: Accounts of Chemical Research, Vol. 44, No. 8, 16.08.2011, p. 563-573.

Research output: Contribution to journalArticle

@article{42bcc4df6afe45628cc5a592827c570f,
title = "Surface-confined assemblies and polymers for molecular logic",
abstract = "Stimuli responsive materials are capable of mimicking the operation characteristics of logic gates such as AND, OR, NOR, and even flip-flops. Since the development of molecular sensors and the introduction of the first AND gate in solution by de Silva in 1993, Molecular (Boolean) Logic and Computing (MBLC) has become increasingly popular. In this Account, we present recent research activities that focus on MBLC with electrochromic polymers and metal polypyridyl complexes on a solid support.Metal polypyridyl complexes act as useful sensors to a variety of analytes in solution (i.e., H2O, Fe2+/3+, Cr6+, NO+) and in the gas phase (NOx in air). This information transfer, whether the analyte is present, is based on the reversible redox chemistry of the metal complexes, which are stable up to 200 °C in air. The concurrent changes in the optical properties are nondestructive and fast. In such a setup, the input is directly related to the output and, therefore, can be represented by one-input logic gates. These input-output relationships are extendable for mimicking the diverse functions of essential molecular logic gates and circuits within a set of Boolean algebraic operations. Such a molecular approach towards Boolean logic has yielded a series of proof-of-concept devices: logic gates, multiplexers, half-adders, and flip-flop logic circuits.MBLC is a versatile and, potentially, a parallel approach to silicon circuits: assemblies of these molecular gates can perform a wide variety of logic tasks through reconfiguration of their inputs. Although these developments do not require a semiconductor blueprint, similar guidelines such as signal propagation, gate-to-gate communication, propagation delay, and combinatorial and sequential logic will play a critical role in allowing this field to mature. For instance, gate-to-gate communication by chemical wiring of the gates with metal ions as electron carriers results in the integration of stand-alone systems: the output of one gate is used as the input for another gate. Using the same setup, we were able to display both combinatorial and sequential logic.We have demonstrated MBLC by coupling electrochemical inputs with optical readout, which resulted in various logic architectures built on a redox-active, functionalized surface. Electrochemically operated sequential logic systems such as flip-flops, multivalued logic, and multistate memory could enhance computational power without increasing spatial requirements. Applying multivalued digits in data storage could exponentially increase memory capacity. Furthermore, we evaluate the pros and cons of MBLC and identify targets for future research in this Account.",
author = "{De Ruiter}, Graham and {van der Boom}, Milko",
year = "2011",
month = "8",
day = "16",
doi = "10.1021/ar200002v",
language = "English",
volume = "44",
pages = "563--573",
journal = "Accounts of Chemical Research",
issn = "0001-4842",
publisher = "American Chemical Society",
number = "8",

}

TY - JOUR

T1 - Surface-confined assemblies and polymers for molecular logic

AU - De Ruiter, Graham

AU - van der Boom, Milko

PY - 2011/8/16

Y1 - 2011/8/16

N2 - Stimuli responsive materials are capable of mimicking the operation characteristics of logic gates such as AND, OR, NOR, and even flip-flops. Since the development of molecular sensors and the introduction of the first AND gate in solution by de Silva in 1993, Molecular (Boolean) Logic and Computing (MBLC) has become increasingly popular. In this Account, we present recent research activities that focus on MBLC with electrochromic polymers and metal polypyridyl complexes on a solid support.Metal polypyridyl complexes act as useful sensors to a variety of analytes in solution (i.e., H2O, Fe2+/3+, Cr6+, NO+) and in the gas phase (NOx in air). This information transfer, whether the analyte is present, is based on the reversible redox chemistry of the metal complexes, which are stable up to 200 °C in air. The concurrent changes in the optical properties are nondestructive and fast. In such a setup, the input is directly related to the output and, therefore, can be represented by one-input logic gates. These input-output relationships are extendable for mimicking the diverse functions of essential molecular logic gates and circuits within a set of Boolean algebraic operations. Such a molecular approach towards Boolean logic has yielded a series of proof-of-concept devices: logic gates, multiplexers, half-adders, and flip-flop logic circuits.MBLC is a versatile and, potentially, a parallel approach to silicon circuits: assemblies of these molecular gates can perform a wide variety of logic tasks through reconfiguration of their inputs. Although these developments do not require a semiconductor blueprint, similar guidelines such as signal propagation, gate-to-gate communication, propagation delay, and combinatorial and sequential logic will play a critical role in allowing this field to mature. For instance, gate-to-gate communication by chemical wiring of the gates with metal ions as electron carriers results in the integration of stand-alone systems: the output of one gate is used as the input for another gate. Using the same setup, we were able to display both combinatorial and sequential logic.We have demonstrated MBLC by coupling electrochemical inputs with optical readout, which resulted in various logic architectures built on a redox-active, functionalized surface. Electrochemically operated sequential logic systems such as flip-flops, multivalued logic, and multistate memory could enhance computational power without increasing spatial requirements. Applying multivalued digits in data storage could exponentially increase memory capacity. Furthermore, we evaluate the pros and cons of MBLC and identify targets for future research in this Account.

AB - Stimuli responsive materials are capable of mimicking the operation characteristics of logic gates such as AND, OR, NOR, and even flip-flops. Since the development of molecular sensors and the introduction of the first AND gate in solution by de Silva in 1993, Molecular (Boolean) Logic and Computing (MBLC) has become increasingly popular. In this Account, we present recent research activities that focus on MBLC with electrochromic polymers and metal polypyridyl complexes on a solid support.Metal polypyridyl complexes act as useful sensors to a variety of analytes in solution (i.e., H2O, Fe2+/3+, Cr6+, NO+) and in the gas phase (NOx in air). This information transfer, whether the analyte is present, is based on the reversible redox chemistry of the metal complexes, which are stable up to 200 °C in air. The concurrent changes in the optical properties are nondestructive and fast. In such a setup, the input is directly related to the output and, therefore, can be represented by one-input logic gates. These input-output relationships are extendable for mimicking the diverse functions of essential molecular logic gates and circuits within a set of Boolean algebraic operations. Such a molecular approach towards Boolean logic has yielded a series of proof-of-concept devices: logic gates, multiplexers, half-adders, and flip-flop logic circuits.MBLC is a versatile and, potentially, a parallel approach to silicon circuits: assemblies of these molecular gates can perform a wide variety of logic tasks through reconfiguration of their inputs. Although these developments do not require a semiconductor blueprint, similar guidelines such as signal propagation, gate-to-gate communication, propagation delay, and combinatorial and sequential logic will play a critical role in allowing this field to mature. For instance, gate-to-gate communication by chemical wiring of the gates with metal ions as electron carriers results in the integration of stand-alone systems: the output of one gate is used as the input for another gate. Using the same setup, we were able to display both combinatorial and sequential logic.We have demonstrated MBLC by coupling electrochemical inputs with optical readout, which resulted in various logic architectures built on a redox-active, functionalized surface. Electrochemically operated sequential logic systems such as flip-flops, multivalued logic, and multistate memory could enhance computational power without increasing spatial requirements. Applying multivalued digits in data storage could exponentially increase memory capacity. Furthermore, we evaluate the pros and cons of MBLC and identify targets for future research in this Account.

UR - http://www.scopus.com/inward/record.url?scp=80051746601&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80051746601&partnerID=8YFLogxK

U2 - 10.1021/ar200002v

DO - 10.1021/ar200002v

M3 - Article

C2 - 21678901

AN - SCOPUS:80051746601

VL - 44

SP - 563

EP - 573

JO - Accounts of Chemical Research

JF - Accounts of Chemical Research

SN - 0001-4842

IS - 8

ER -