Surface-Induced Deprotection of THP-Protected Hydroxamic Acids on Titanium Dioxide

Bradley J. Brennan, Christopher Koenigsmann, Kelly L. Materna, Paul M. Kim, Matthieu Koepf, Robert H. Crabtree, Charles A. Schmuttenmaer, Gary W. Brudvig

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


Hydroxamic acids chelate metals with high affinity and form hydrolytically stable complexes with metal oxides such as TiO2. However, these appealing binding properties can cause problems during the preparation and application of metallocatalysts with appended hydroxamate anchoring groups. Here we show that the tetrahydropyran (THP) O-protected hydroxamate group can be cleaved in situ on a TiO2 surface at room temperature, leading to the surface-bound species. Surface-mediated deprotection has several advantages over direct surface functionalization including increased hydrolytic stability of the covalent interaction with the metal oxide surface and decreased aggregation of the surface species. Application of the surface-mediated chelation method for dye-sensitized photoelectrochemical cells (DSPC) was examined using the organic dye MK-2. Results show that the surface-mediated deprotection led to improved DSPC performance attributed to a decrease in dye aggregation relative to a DSPC prepared using standard methods. This simplified approach using THP-protected hydroxamates provides a convenient new method for functionalizing metal oxides.

Original languageEnglish
Pages (from-to)12495-12502
Number of pages8
JournalJournal of Physical Chemistry C
Issue number23
Publication statusPublished - Jun 16 2016

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Surface-Induced Deprotection of THP-Protected Hydroxamic Acids on Titanium Dioxide'. Together they form a unique fingerprint.

Cite this