Surface skin development and rupture during sol-gel spin-coating

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


Spin coating is one of the standard methods for depositing sol-gel, nanocomposite, or polymer coatings onto flat substrates (silicon wafers, glass plates for displays, sensor substrates, etc.). Our recent research has been focused at understanding a wide variety of defect formation mechanisms and looking for ways to prevent these defects. A key aspect of spin-coating is the solvent evaporation that happens at the top surface of the coating fluid during spinning - even while the fluid is moving rapidly, radially, outward on the substrate. As the fluid gets physically thinner, concentration gradients can develop within the fluid as a result of the evaporation. The enrichment of the precursors at the top surface can cause premature gelation there, in other words a "skin" may form. This skin layer is also more resistant to stretching than the underlying fluid and can retard radial fluid motions as well as further solvent evaporation. It is even possible for the stretching forces to be large enough that fracture or tearing of the skin occurs. These surface ruptures create wispy locations of significantly thinner coating or small randomly located linear rips, but they do not typically result in complete penetration through the coating. The occurrence of these defects depends to a large degree on the volatility of key solvents used in the sol-gel process, with less volatile solvents being less likely to result in surface ruptures.

Original languageEnglish
Pages (from-to)225-228
Number of pages4
JournalJournal of Sol-Gel Science and Technology
Issue number1-3 SPEC.ISS.
Publication statusPublished - Aug 2004


  • Defects
  • Fluid flow
  • Spin-coating
  • Surface skin

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Chemistry(all)
  • Biomaterials
  • Condensed Matter Physics
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Surface skin development and rupture during sol-gel spin-coating'. Together they form a unique fingerprint.

Cite this