Abstract
Carefully prepared bulk ceramic specimens of In2O3 and Sn-doped In2O3 (ITO) were analysed with x-ray and UV photoelectron spectroscopy before and after heat treatment in vacuum and oxygen atmosphere. The results on ex situ prepared ceramic specimens were shown to be comparable to those of in situ deposited-measured thin films in terms of core levels, Fermi levels and ionization potentials. This suggests a viable path for rapid synthesis and screening of surface electronic-defect properties for other transparent conducting oxides (TCO) materials. A strong correlation exists between the surface electronic-defect structure of In2O 3-based TCOs and their underlying electronic-defect structure, owing to the unique crystal-defect properties of the bixbyite structure. This leads to formation of a chemical depletion at the surface and the formation of a peroxide surface species for higher preparation temperatures. The results are discussed with respect to the use of ITO as hole injection electrode in organic light emitting devices.
Original language | English |
---|---|
Article number | 006 |
Pages (from-to) | 3959-3968 |
Number of pages | 10 |
Journal | Journal of Physics D: Applied Physics |
Volume | 39 |
Issue number | 18 |
DOIs | |
Publication status | Published - Sep 21 2006 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films