Synthesis and characterization of oxide materials for thermochemical CO 2 splitting using concentrated solar energy

Andrea Ambrosini, Eric N. Coker, Mark A. Rodriguez, James E. Miller, Ellen Stechel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The Sunshine to Petrol project at Sandia aims to utilize concentrated solar energy to convert carbon dioxide and water to syn gas precursors for liquid hydrocarbon fuels. Solar thermochemical CO 2-splitting is possible utilizing redox-active metal oxides: MO x → MO x-y + y/2 O 2 (>1300°C) MO x-y + yCO 2→ MO x + yCO (

Original languageEnglish
Title of host publicationACS National Meeting Book of Abstracts
Publication statusPublished - 2011
Event242nd ACS National Meeting and Exposition - Denver, CO, United States
Duration: Aug 28 2011Sep 1 2011

Other

Other242nd ACS National Meeting and Exposition
CountryUnited States
CityDenver, CO
Period8/28/119/1/11

Fingerprint

Carbon Monoxide
Hydrocarbons
Carbon Dioxide
Solar energy
Oxides
Carbon dioxide
Gases
Metals
Water
Liquids
Oxidation-Reduction

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Cite this

Ambrosini, A., Coker, E. N., Rodriguez, M. A., Miller, J. E., & Stechel, E. (2011). Synthesis and characterization of oxide materials for thermochemical CO 2 splitting using concentrated solar energy. In ACS National Meeting Book of Abstracts

Synthesis and characterization of oxide materials for thermochemical CO 2 splitting using concentrated solar energy. / Ambrosini, Andrea; Coker, Eric N.; Rodriguez, Mark A.; Miller, James E.; Stechel, Ellen.

ACS National Meeting Book of Abstracts. 2011.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Ambrosini, A, Coker, EN, Rodriguez, MA, Miller, JE & Stechel, E 2011, Synthesis and characterization of oxide materials for thermochemical CO 2 splitting using concentrated solar energy. in ACS National Meeting Book of Abstracts. 242nd ACS National Meeting and Exposition, Denver, CO, United States, 8/28/11.
Ambrosini A, Coker EN, Rodriguez MA, Miller JE, Stechel E. Synthesis and characterization of oxide materials for thermochemical CO 2 splitting using concentrated solar energy. In ACS National Meeting Book of Abstracts. 2011
Ambrosini, Andrea ; Coker, Eric N. ; Rodriguez, Mark A. ; Miller, James E. ; Stechel, Ellen. / Synthesis and characterization of oxide materials for thermochemical CO 2 splitting using concentrated solar energy. ACS National Meeting Book of Abstracts. 2011.
@inproceedings{8369cefcc86d43689f31791e48ab5c35,
title = "Synthesis and characterization of oxide materials for thermochemical CO 2 splitting using concentrated solar energy",
abstract = "The Sunshine to Petrol project at Sandia aims to utilize concentrated solar energy to convert carbon dioxide and water to syn gas precursors for liquid hydrocarbon fuels. Solar thermochemical CO 2-splitting is possible utilizing redox-active metal oxides: MO x → MO x-y + y/2 O 2 (>1300°C) MO x-y + yCO 2→ MO x + yCO (",
author = "Andrea Ambrosini and Coker, {Eric N.} and Rodriguez, {Mark A.} and Miller, {James E.} and Ellen Stechel",
year = "2011",
language = "English",
booktitle = "ACS National Meeting Book of Abstracts",

}

TY - GEN

T1 - Synthesis and characterization of oxide materials for thermochemical CO 2 splitting using concentrated solar energy

AU - Ambrosini, Andrea

AU - Coker, Eric N.

AU - Rodriguez, Mark A.

AU - Miller, James E.

AU - Stechel, Ellen

PY - 2011

Y1 - 2011

N2 - The Sunshine to Petrol project at Sandia aims to utilize concentrated solar energy to convert carbon dioxide and water to syn gas precursors for liquid hydrocarbon fuels. Solar thermochemical CO 2-splitting is possible utilizing redox-active metal oxides: MO x → MO x-y + y/2 O 2 (>1300°C) MO x-y + yCO 2→ MO x + yCO (

AB - The Sunshine to Petrol project at Sandia aims to utilize concentrated solar energy to convert carbon dioxide and water to syn gas precursors for liquid hydrocarbon fuels. Solar thermochemical CO 2-splitting is possible utilizing redox-active metal oxides: MO x → MO x-y + y/2 O 2 (>1300°C) MO x-y + yCO 2→ MO x + yCO (

UR - http://www.scopus.com/inward/record.url?scp=84861081481&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84861081481&partnerID=8YFLogxK

M3 - Conference contribution

BT - ACS National Meeting Book of Abstracts

ER -