Theoretical studies of energy transfer and reaction in H+H2O and H+D2O collisions

Kathleen Kudla, George C Schatz

Research output: Contribution to journalArticle

48 Citations (Scopus)

Abstract

We present the results of a quasiclassical trajectory study of vibration-rotation excitation and reaction in H+H2O(000) and H+D 2O(000) collisions, including detailed comparisons with experiment. All calculations have used a semiempirical potential surface due to Schatz and Elgersma, and the H2O initial and final states were numerically determined by solving for the good action variables associated with vibrational motions. Our studies of collisional excitation emphasize comparisons with recent experiments by Lovejoy, Goldfarb, and Leone [J. Chem. Phys. 96, 7180 (1992)] in which fast hydrogen atoms produce vibrationally and rotationally excited water. As in the experiments, we find a propensity for the production of rotational states in which the rotational angular momentum vector is predominantly aligned perpendicular to the water molecule plane (c-axis excitation). This propensity is found for all excited vibrational states of H2O, but it is significantly stronger in the experiments [where only the (001) state was studied] than in the calculations. An analysis of trajectory motions indicates that the primary excitation mechanism for states which show the c-axis propensity involves a nearly planar collision in which the incoming H impulsively strikes one of the water hydrogens. Failed reactive collisions associated with either abstraction or exchange as well as reactive exchange collisions give the same propensity but they are not the dominant mechanism for producing aligned water. In studies of the reaction H+D2O→OD+HD, we analyze product vibrational and rotational state distributions in detail, making comparison with recent studies of Adelman, Filseth, and Zare [preceding paper, J. Chem. Phys. 98, 4636 (1993)] as well as earlier work. The product HD energy partitioning is found to be in excellent average agreement with experiment, with the HD receiving much more of the available energy than does OD. There are, however, differences in some of the HD rotational distributions, with the experiment showing a much stronger inverse correlation between HD rotational and vibrational excitation than is found in the calculations.

Original languageEnglish
Pages (from-to)4644-4651
Number of pages8
JournalJournal of Chemical Physics
Volume98
Issue number6
Publication statusPublished - 1993

Fingerprint

Energy transfer
energy transfer
collisions
excitation
rotational states
Water
vibrational states
Experiments
water
trajectories
Hydrogen
Trajectories
products
Angular momentum
hydrogen atoms
angular momentum
vibration
energy
hydrogen
Atoms

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Theoretical studies of energy transfer and reaction in H+H2O and H+D2O collisions. / Kudla, Kathleen; Schatz, George C.

In: Journal of Chemical Physics, Vol. 98, No. 6, 1993, p. 4644-4651.

Research output: Contribution to journalArticle

@article{ba8a806f508640b59dd25093d4c53452,
title = "Theoretical studies of energy transfer and reaction in H+H2O and H+D2O collisions",
abstract = "We present the results of a quasiclassical trajectory study of vibration-rotation excitation and reaction in H+H2O(000) and H+D 2O(000) collisions, including detailed comparisons with experiment. All calculations have used a semiempirical potential surface due to Schatz and Elgersma, and the H2O initial and final states were numerically determined by solving for the good action variables associated with vibrational motions. Our studies of collisional excitation emphasize comparisons with recent experiments by Lovejoy, Goldfarb, and Leone [J. Chem. Phys. 96, 7180 (1992)] in which fast hydrogen atoms produce vibrationally and rotationally excited water. As in the experiments, we find a propensity for the production of rotational states in which the rotational angular momentum vector is predominantly aligned perpendicular to the water molecule plane (c-axis excitation). This propensity is found for all excited vibrational states of H2O, but it is significantly stronger in the experiments [where only the (001) state was studied] than in the calculations. An analysis of trajectory motions indicates that the primary excitation mechanism for states which show the c-axis propensity involves a nearly planar collision in which the incoming H impulsively strikes one of the water hydrogens. Failed reactive collisions associated with either abstraction or exchange as well as reactive exchange collisions give the same propensity but they are not the dominant mechanism for producing aligned water. In studies of the reaction H+D2O→OD+HD, we analyze product vibrational and rotational state distributions in detail, making comparison with recent studies of Adelman, Filseth, and Zare [preceding paper, J. Chem. Phys. 98, 4636 (1993)] as well as earlier work. The product HD energy partitioning is found to be in excellent average agreement with experiment, with the HD receiving much more of the available energy than does OD. There are, however, differences in some of the HD rotational distributions, with the experiment showing a much stronger inverse correlation between HD rotational and vibrational excitation than is found in the calculations.",
author = "Kathleen Kudla and Schatz, {George C}",
year = "1993",
language = "English",
volume = "98",
pages = "4644--4651",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "6",

}

TY - JOUR

T1 - Theoretical studies of energy transfer and reaction in H+H2O and H+D2O collisions

AU - Kudla, Kathleen

AU - Schatz, George C

PY - 1993

Y1 - 1993

N2 - We present the results of a quasiclassical trajectory study of vibration-rotation excitation and reaction in H+H2O(000) and H+D 2O(000) collisions, including detailed comparisons with experiment. All calculations have used a semiempirical potential surface due to Schatz and Elgersma, and the H2O initial and final states were numerically determined by solving for the good action variables associated with vibrational motions. Our studies of collisional excitation emphasize comparisons with recent experiments by Lovejoy, Goldfarb, and Leone [J. Chem. Phys. 96, 7180 (1992)] in which fast hydrogen atoms produce vibrationally and rotationally excited water. As in the experiments, we find a propensity for the production of rotational states in which the rotational angular momentum vector is predominantly aligned perpendicular to the water molecule plane (c-axis excitation). This propensity is found for all excited vibrational states of H2O, but it is significantly stronger in the experiments [where only the (001) state was studied] than in the calculations. An analysis of trajectory motions indicates that the primary excitation mechanism for states which show the c-axis propensity involves a nearly planar collision in which the incoming H impulsively strikes one of the water hydrogens. Failed reactive collisions associated with either abstraction or exchange as well as reactive exchange collisions give the same propensity but they are not the dominant mechanism for producing aligned water. In studies of the reaction H+D2O→OD+HD, we analyze product vibrational and rotational state distributions in detail, making comparison with recent studies of Adelman, Filseth, and Zare [preceding paper, J. Chem. Phys. 98, 4636 (1993)] as well as earlier work. The product HD energy partitioning is found to be in excellent average agreement with experiment, with the HD receiving much more of the available energy than does OD. There are, however, differences in some of the HD rotational distributions, with the experiment showing a much stronger inverse correlation between HD rotational and vibrational excitation than is found in the calculations.

AB - We present the results of a quasiclassical trajectory study of vibration-rotation excitation and reaction in H+H2O(000) and H+D 2O(000) collisions, including detailed comparisons with experiment. All calculations have used a semiempirical potential surface due to Schatz and Elgersma, and the H2O initial and final states were numerically determined by solving for the good action variables associated with vibrational motions. Our studies of collisional excitation emphasize comparisons with recent experiments by Lovejoy, Goldfarb, and Leone [J. Chem. Phys. 96, 7180 (1992)] in which fast hydrogen atoms produce vibrationally and rotationally excited water. As in the experiments, we find a propensity for the production of rotational states in which the rotational angular momentum vector is predominantly aligned perpendicular to the water molecule plane (c-axis excitation). This propensity is found for all excited vibrational states of H2O, but it is significantly stronger in the experiments [where only the (001) state was studied] than in the calculations. An analysis of trajectory motions indicates that the primary excitation mechanism for states which show the c-axis propensity involves a nearly planar collision in which the incoming H impulsively strikes one of the water hydrogens. Failed reactive collisions associated with either abstraction or exchange as well as reactive exchange collisions give the same propensity but they are not the dominant mechanism for producing aligned water. In studies of the reaction H+D2O→OD+HD, we analyze product vibrational and rotational state distributions in detail, making comparison with recent studies of Adelman, Filseth, and Zare [preceding paper, J. Chem. Phys. 98, 4636 (1993)] as well as earlier work. The product HD energy partitioning is found to be in excellent average agreement with experiment, with the HD receiving much more of the available energy than does OD. There are, however, differences in some of the HD rotational distributions, with the experiment showing a much stronger inverse correlation between HD rotational and vibrational excitation than is found in the calculations.

UR - http://www.scopus.com/inward/record.url?scp=0001744258&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001744258&partnerID=8YFLogxK

M3 - Article

VL - 98

SP - 4644

EP - 4651

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 6

ER -