Through-Space Ultrafast Photoinduced Electron Transfer Dynamics of a C70-Encapsulated Bisporphyrin Covalent Organic Polyhedron in a Low-Dielectric Medium

Michael Ortiz, Sung Cho, Jens Niklas, Seonah Kim, Oleg G. Poluektov, Wei Zhang, Garry Rumbles, Jaehong Park

Research output: Contribution to journalArticle

24 Citations (Scopus)


Ultrafast photoinduced electron transfer (PIET) dynamics of a C70-encapsulated bisporphyrin covalent organic polyhedron hybrid (C70@COP-5) is studied in a nonpolar toluene medium with fluorescence and transient absorption spectroscopies. This structurally rigid donor (D)-acceptor (A) molecular hybrid offers a new platform featuring conformationally predetermined cofacial D-A orientation with a fixed edge-to-edge separation, REE (2.8 Å), without the aid of covalent bonds. Sub-picosecond PIET (τET ≤ 0.4 ps) and very slow charge recombination (τCR ≈ 600 ps) dynamics are observed. The origin of these dynamics is discussed in terms of enhanced D-A coupling (V = 675 cm-1) and extremely small reorganization energy (λ ≈ 0.18 eV), induced by the intrinsic structural rigidity of the C70@COP-5 complex.

Original languageEnglish
Pages (from-to)4286-4289
Number of pages4
JournalJournal of the American Chemical Society
Issue number12
Publication statusPublished - Mar 29 2017


ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this