Abstract
Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal.
Original language | English |
---|---|
Pages (from-to) | 1242-1246 |
Number of pages | 5 |
Journal | Science |
Volume | 346 |
Issue number | 6214 |
DOIs | |
Publication status | Published - Dec 5 2014 |
Fingerprint
ASJC Scopus subject areas
- General
- Medicine(all)
Cite this
Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. / Tenboer, Jason; Basu, Shibom; Zatsepin, Nadia; Pande, Kanupriya; Milathianaki, Despina; Frank, Matthias; Hunter, Mark; Boutet, Sébastien; Williams, Garth J.; Koglin, Jason E.; Oberthuer, Dominik; Heymann, Michael; Kupitz, Christopher; Conrad, Chelsie; Coe, Jesse; Roy-Chowdhury, Shatabdi; Weierstall, Uwe; James, Daniel; Wang, Dingjie; Grant, Thomas; Barty, Anton; Yefanov, Oleksandr; Scales, Jennifer; Gati, Cornelius; Seuring, Carolin; Srajer, Vukica; Henning, Robert; Schwander, Peter; Fromme, Raimund; Ourmazd, Abbas; Moffat, Keith; Van Thor, Jasper J.; Spence, John C H; Fromme, Petra; Chapman, Henry N.; Schmidt, Marius.
In: Science, Vol. 346, No. 6214, 05.12.2014, p. 1242-1246.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein
AU - Tenboer, Jason
AU - Basu, Shibom
AU - Zatsepin, Nadia
AU - Pande, Kanupriya
AU - Milathianaki, Despina
AU - Frank, Matthias
AU - Hunter, Mark
AU - Boutet, Sébastien
AU - Williams, Garth J.
AU - Koglin, Jason E.
AU - Oberthuer, Dominik
AU - Heymann, Michael
AU - Kupitz, Christopher
AU - Conrad, Chelsie
AU - Coe, Jesse
AU - Roy-Chowdhury, Shatabdi
AU - Weierstall, Uwe
AU - James, Daniel
AU - Wang, Dingjie
AU - Grant, Thomas
AU - Barty, Anton
AU - Yefanov, Oleksandr
AU - Scales, Jennifer
AU - Gati, Cornelius
AU - Seuring, Carolin
AU - Srajer, Vukica
AU - Henning, Robert
AU - Schwander, Peter
AU - Fromme, Raimund
AU - Ourmazd, Abbas
AU - Moffat, Keith
AU - Van Thor, Jasper J.
AU - Spence, John C H
AU - Fromme, Petra
AU - Chapman, Henry N.
AU - Schmidt, Marius
PY - 2014/12/5
Y1 - 2014/12/5
N2 - Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal.
AB - Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal.
UR - http://www.scopus.com/inward/record.url?scp=84918582756&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84918582756&partnerID=8YFLogxK
U2 - 10.1126/science.1259357
DO - 10.1126/science.1259357
M3 - Article
C2 - 25477465
AN - SCOPUS:84918582756
VL - 346
SP - 1242
EP - 1246
JO - Science
JF - Science
SN - 0036-8075
IS - 6214
ER -