Abstract
Current molecular water-oxidation photoelectrocatalytic cells have substantial kinetic limitations under normal solar photon flux where electron-hole recombination processes may outcompete charge buildup on the catalytic centers. One method of overcoming these limitations is to design a system where multiple light-harvesting dyes work cooperatively with a single catalyst. We report a porphyrin monomer/dyad array for analysis of lateral hole transfer on a SnO2 surface consisting of a free-base porphyrin that functions to absorb light and initiate charge injection into the conduction band of SnO2, which leaves a positive charge on the organic moiety, and a free-base porphyrin/Zn-porphyrin dyad molecule that functions as a thermodynamic trap for the photoinduced holes. By using transient absorption spectroscopy, we have determined that the holes on the surface-bound free-base porphyrins are highly mobile via electron self-exchange between close-packed neighbors. The lateral charge-transfer processes were modelled by treating the system statistically with a random-walk method that utilizes experimentally derived kinetic parameters. The results of the modelling indicate that each self-exchange (hop) occurs within 25 ns and that the holes are efficiently transferred to the Zn-porphyrin. This hole-harvesting scheme provides a framework for enhancing the efficiency of multielectron photoelectrocatalytic reactions such as the four-electron oxidation of water.
Original language | English |
---|---|
Pages (from-to) | 12728-12734 |
Number of pages | 7 |
Journal | Physical Chemistry Chemical Physics |
Volume | 17 |
Issue number | 19 |
DOIs | |
Publication status | Published - May 21 2015 |
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Physical and Theoretical Chemistry