Tropochemical Cell-Twinning in the New Quaternary Bismuth Selenides K xSn6-2xBi2+xSe9 and KSn 5Bi5Se13

Antje Mrotzek, Mercouri G Kanatzidis

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

The quaternary KxSn6-2xBi2+xSe 9 were discovered from reactions involving K2Se, Bi 2Se3, Sn, and Se. The single crystal structures reveal that KxSn6-2xBi2+xSe9 is isostructural to the mineral heyrovskyite, Pb6Bi2S 9, crystallizing in the space group Cmcm with a = 4.2096(4) Å, b = 14.006(1) Å, and c = 32.451(3) Å while KSn5Bi 5Se13 adopts a novel monoclinic structure type (C2/m, a = 13.879(4) Å, b = 4.205(1) Å, c = 23.363(6) Å, β = 99.012(4)°). These compounds formally belong to the lillianite homologous series xPbS·Bi2S3, whose characteristic is derivation of the structure by tropochemical cell-twinning on the (311) plane of the NaCl-type lattice with a mirror as twin operation. The structures of KxSn6-2xBi2+xSe9 and KSn 5Bi5Se13 differ in the width of the NaCl-type slabs that form the three-dimensional arrangement. While cell-twinning of 7 octahedra wide slabs results in the heyrovskyite structure, 4 and 5 octahedra wide slabs alternate in the structure of KSn5Bi5Se 13. In both structures, the Bi and Sn atoms are extensively disordered over the metal sites. Some physicochemical properties of K xSn6-2xBi2+xSe9 and KSn 5Bi5Se13 are reported.

Original languageEnglish
Pages (from-to)7200-7206
Number of pages7
JournalInorganic Chemistry
Volume42
Issue number22
DOIs
Publication statusPublished - Nov 3 2003

Fingerprint

Bismuth
selenides
Twinning
twinning
bismuth
slabs
cells
Minerals
Mirrors
Crystal structure
Metals
Single crystals
Atoms
derivation
minerals
mirrors
crystal structure
single crystals
metals
atoms

ASJC Scopus subject areas

  • Inorganic Chemistry

Cite this

Tropochemical Cell-Twinning in the New Quaternary Bismuth Selenides K xSn6-2xBi2+xSe9 and KSn 5Bi5Se13 . / Mrotzek, Antje; Kanatzidis, Mercouri G.

In: Inorganic Chemistry, Vol. 42, No. 22, 03.11.2003, p. 7200-7206.

Research output: Contribution to journalArticle

@article{a6ee3f799d724f1694511f7a05d64520,
title = "Tropochemical Cell-Twinning in the New Quaternary Bismuth Selenides K xSn6-2xBi2+xSe9 and KSn 5Bi5Se13",
abstract = "The quaternary KxSn6-2xBi2+xSe 9 were discovered from reactions involving K2Se, Bi 2Se3, Sn, and Se. The single crystal structures reveal that KxSn6-2xBi2+xSe9 is isostructural to the mineral heyrovskyite, Pb6Bi2S 9, crystallizing in the space group Cmcm with a = 4.2096(4) {\AA}, b = 14.006(1) {\AA}, and c = 32.451(3) {\AA} while KSn5Bi 5Se13 adopts a novel monoclinic structure type (C2/m, a = 13.879(4) {\AA}, b = 4.205(1) {\AA}, c = 23.363(6) {\AA}, β = 99.012(4)°). These compounds formally belong to the lillianite homologous series xPbS·Bi2S3, whose characteristic is derivation of the structure by tropochemical cell-twinning on the (311) plane of the NaCl-type lattice with a mirror as twin operation. The structures of KxSn6-2xBi2+xSe9 and KSn 5Bi5Se13 differ in the width of the NaCl-type slabs that form the three-dimensional arrangement. While cell-twinning of 7 octahedra wide slabs results in the heyrovskyite structure, 4 and 5 octahedra wide slabs alternate in the structure of KSn5Bi5Se 13. In both structures, the Bi and Sn atoms are extensively disordered over the metal sites. Some physicochemical properties of K xSn6-2xBi2+xSe9 and KSn 5Bi5Se13 are reported.",
author = "Antje Mrotzek and Kanatzidis, {Mercouri G}",
year = "2003",
month = "11",
day = "3",
doi = "10.1021/ic034252n",
language = "English",
volume = "42",
pages = "7200--7206",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "22",

}

TY - JOUR

T1 - Tropochemical Cell-Twinning in the New Quaternary Bismuth Selenides K xSn6-2xBi2+xSe9 and KSn 5Bi5Se13

AU - Mrotzek, Antje

AU - Kanatzidis, Mercouri G

PY - 2003/11/3

Y1 - 2003/11/3

N2 - The quaternary KxSn6-2xBi2+xSe 9 were discovered from reactions involving K2Se, Bi 2Se3, Sn, and Se. The single crystal structures reveal that KxSn6-2xBi2+xSe9 is isostructural to the mineral heyrovskyite, Pb6Bi2S 9, crystallizing in the space group Cmcm with a = 4.2096(4) Å, b = 14.006(1) Å, and c = 32.451(3) Å while KSn5Bi 5Se13 adopts a novel monoclinic structure type (C2/m, a = 13.879(4) Å, b = 4.205(1) Å, c = 23.363(6) Å, β = 99.012(4)°). These compounds formally belong to the lillianite homologous series xPbS·Bi2S3, whose characteristic is derivation of the structure by tropochemical cell-twinning on the (311) plane of the NaCl-type lattice with a mirror as twin operation. The structures of KxSn6-2xBi2+xSe9 and KSn 5Bi5Se13 differ in the width of the NaCl-type slabs that form the three-dimensional arrangement. While cell-twinning of 7 octahedra wide slabs results in the heyrovskyite structure, 4 and 5 octahedra wide slabs alternate in the structure of KSn5Bi5Se 13. In both structures, the Bi and Sn atoms are extensively disordered over the metal sites. Some physicochemical properties of K xSn6-2xBi2+xSe9 and KSn 5Bi5Se13 are reported.

AB - The quaternary KxSn6-2xBi2+xSe 9 were discovered from reactions involving K2Se, Bi 2Se3, Sn, and Se. The single crystal structures reveal that KxSn6-2xBi2+xSe9 is isostructural to the mineral heyrovskyite, Pb6Bi2S 9, crystallizing in the space group Cmcm with a = 4.2096(4) Å, b = 14.006(1) Å, and c = 32.451(3) Å while KSn5Bi 5Se13 adopts a novel monoclinic structure type (C2/m, a = 13.879(4) Å, b = 4.205(1) Å, c = 23.363(6) Å, β = 99.012(4)°). These compounds formally belong to the lillianite homologous series xPbS·Bi2S3, whose characteristic is derivation of the structure by tropochemical cell-twinning on the (311) plane of the NaCl-type lattice with a mirror as twin operation. The structures of KxSn6-2xBi2+xSe9 and KSn 5Bi5Se13 differ in the width of the NaCl-type slabs that form the three-dimensional arrangement. While cell-twinning of 7 octahedra wide slabs results in the heyrovskyite structure, 4 and 5 octahedra wide slabs alternate in the structure of KSn5Bi5Se 13. In both structures, the Bi and Sn atoms are extensively disordered over the metal sites. Some physicochemical properties of K xSn6-2xBi2+xSe9 and KSn 5Bi5Se13 are reported.

UR - http://www.scopus.com/inward/record.url?scp=0242290393&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0242290393&partnerID=8YFLogxK

U2 - 10.1021/ic034252n

DO - 10.1021/ic034252n

M3 - Article

VL - 42

SP - 7200

EP - 7206

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 22

ER -