Ultrafast Coherent Terahertz Spectroscopy in High Magnetic Fields and Directed Energy Flows in Quantum Dot Assemblies

S. A. Crooker, T. Barrick, J. A. Hollingsworth, V. I. Klimov

Research output: Contribution to journalConference articlepeer-review

1 Citation (Scopus)


We describe the design, construction, and use of fiber-coupled terahertz antennas for performing ultrafast coherent THz spectroscopy directly in the cryogenic bore of high-field magnets. With an aim towards measuring the high-frequency (100 GHz to 2000 GHz) complex conductivity of correlated electron materials in the regime of low temperatures and high magnetic fields, these miniature THz emitters and receivers are demonstrated to work down to 1.5 K and up to 18 T, for eventual use in higher-field magnets. Results from a variety of semiconducting and superconducting samples are presented. This paper also describes a separate effort towards achieving coupling between colloidal semiconductor nanocrystal quantum dots, wherein we realize and study inter-dot communication via resonant (Förster) energy transfer. We present studies of the dynamics of resonant energy transfer in monodisperse and energy gradient (layered) assemblies of CdSe nanocrystal quantum dots. Time- and spectrally-resolved photoluminescence data directly reveal the energy-dependent transfer rate of excitons from smaller to larger dots. Results from layered nanocrystal quantum dot assemblies demonstrate unidirectional energy flows, a first step towards artificial light-harvesting structures. Lastly, time-resolved studies at millikelvin temperatures elucidate the nature of ground-state "dark" excitons in these quantum dots.

Original languageEnglish
Pages (from-to)113-122
Number of pages10
JournalActa Physica Polonica A
Issue number2
Publication statusPublished - Aug 2003
EventProceedings of the 32nd International School of Semiconducting Compounds - Jaszowiec, Poland
Duration: May 30 2003Jun 6 2003

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Ultrafast Coherent Terahertz Spectroscopy in High Magnetic Fields and Directed Energy Flows in Quantum Dot Assemblies'. Together they form a unique fingerprint.

Cite this