Ultrafast dynamics in aqueous polyacrylamide solutions

H. Shirota, Ed Castner

Research output: Contribution to journalArticle

68 Citations (Scopus)

Abstract

We have investigated the ultrafast dynamics of aqueous polyacrylamide ([-CH2CH(CONH2)-]n, or PAAm) solutions using femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The observed aqueous PAAm dynamics are nearly identical for both Mw = 1500 and 10 000. Aqueous propionamide (CH3CH2CONH2, or PrAm) solutions were also studied, because PrAm is an exact model for the PAAm constitutional repeat unit (CRU). The longest time scale dynamics observed for both aqueous PAAm and PrAm solutions occur in the 4-10 ps range. Over the range of concentrations from 0 to 40 wt %, the picosecond reorientation time constants for the aqueous PAAm and PrAm solutions scale linearly with the solution concentration, despite the fact that the solution shear viscosities vary exponentially from 1 to 264 cP. For a given value of solution concentration in weight percent, constant ratios of measured reorientation time constants for PAAm to PrAm are obtained. This ratio of PAAm to PrAm reorientation time constants is equal to the ratio of the volume for the PAAm constitutional repeat unit (-CH2CHCONH2-) to the molecular volume of PrAm. For these reasons, we assign the polymer reorientation dynamics to motions of the entire constitutional repeat unit, not only side group motions. Simple molecular dynamics simulations of H[-CH2CH(CONH2)-]7H in a periodic box with 180 water molecules support this assignment. Amide-amide and amide-water hydrogen-bonding interactions lead to strongly oscillatory femtosecond dynamics in the Kerr transients, peaking at 80, 410, and 750 fs.

Original languageEnglish
Pages (from-to)12877-12885
Number of pages9
JournalJournal of the American Chemical Society
Volume123
Issue number51
DOIs
Publication statusPublished - Dec 26 2001

Fingerprint

Polyacrylates
Amides
Shear viscosity
Water
Molecular Dynamics Simulation
Hydrogen Bonding
polyacrylamide
Viscosity
Molecular dynamics
Spectrum Analysis
Hydrogen bonds
Polymers
Spectroscopy
Weights and Measures
Molecules
Computer simulation

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Ultrafast dynamics in aqueous polyacrylamide solutions. / Shirota, H.; Castner, Ed.

In: Journal of the American Chemical Society, Vol. 123, No. 51, 26.12.2001, p. 12877-12885.

Research output: Contribution to journalArticle

@article{bd2dd6facf984cd19d5ab3da6fadb950,
title = "Ultrafast dynamics in aqueous polyacrylamide solutions",
abstract = "We have investigated the ultrafast dynamics of aqueous polyacrylamide ([-CH2CH(CONH2)-]n, or PAAm) solutions using femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The observed aqueous PAAm dynamics are nearly identical for both Mw = 1500 and 10 000. Aqueous propionamide (CH3CH2CONH2, or PrAm) solutions were also studied, because PrAm is an exact model for the PAAm constitutional repeat unit (CRU). The longest time scale dynamics observed for both aqueous PAAm and PrAm solutions occur in the 4-10 ps range. Over the range of concentrations from 0 to 40 wt {\%}, the picosecond reorientation time constants for the aqueous PAAm and PrAm solutions scale linearly with the solution concentration, despite the fact that the solution shear viscosities vary exponentially from 1 to 264 cP. For a given value of solution concentration in weight percent, constant ratios of measured reorientation time constants for PAAm to PrAm are obtained. This ratio of PAAm to PrAm reorientation time constants is equal to the ratio of the volume for the PAAm constitutional repeat unit (-CH2CHCONH2-) to the molecular volume of PrAm. For these reasons, we assign the polymer reorientation dynamics to motions of the entire constitutional repeat unit, not only side group motions. Simple molecular dynamics simulations of H[-CH2CH(CONH2)-]7H in a periodic box with 180 water molecules support this assignment. Amide-amide and amide-water hydrogen-bonding interactions lead to strongly oscillatory femtosecond dynamics in the Kerr transients, peaking at 80, 410, and 750 fs.",
author = "H. Shirota and Ed Castner",
year = "2001",
month = "12",
day = "26",
doi = "10.1021/ja010290z",
language = "English",
volume = "123",
pages = "12877--12885",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "51",

}

TY - JOUR

T1 - Ultrafast dynamics in aqueous polyacrylamide solutions

AU - Shirota, H.

AU - Castner, Ed

PY - 2001/12/26

Y1 - 2001/12/26

N2 - We have investigated the ultrafast dynamics of aqueous polyacrylamide ([-CH2CH(CONH2)-]n, or PAAm) solutions using femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The observed aqueous PAAm dynamics are nearly identical for both Mw = 1500 and 10 000. Aqueous propionamide (CH3CH2CONH2, or PrAm) solutions were also studied, because PrAm is an exact model for the PAAm constitutional repeat unit (CRU). The longest time scale dynamics observed for both aqueous PAAm and PrAm solutions occur in the 4-10 ps range. Over the range of concentrations from 0 to 40 wt %, the picosecond reorientation time constants for the aqueous PAAm and PrAm solutions scale linearly with the solution concentration, despite the fact that the solution shear viscosities vary exponentially from 1 to 264 cP. For a given value of solution concentration in weight percent, constant ratios of measured reorientation time constants for PAAm to PrAm are obtained. This ratio of PAAm to PrAm reorientation time constants is equal to the ratio of the volume for the PAAm constitutional repeat unit (-CH2CHCONH2-) to the molecular volume of PrAm. For these reasons, we assign the polymer reorientation dynamics to motions of the entire constitutional repeat unit, not only side group motions. Simple molecular dynamics simulations of H[-CH2CH(CONH2)-]7H in a periodic box with 180 water molecules support this assignment. Amide-amide and amide-water hydrogen-bonding interactions lead to strongly oscillatory femtosecond dynamics in the Kerr transients, peaking at 80, 410, and 750 fs.

AB - We have investigated the ultrafast dynamics of aqueous polyacrylamide ([-CH2CH(CONH2)-]n, or PAAm) solutions using femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The observed aqueous PAAm dynamics are nearly identical for both Mw = 1500 and 10 000. Aqueous propionamide (CH3CH2CONH2, or PrAm) solutions were also studied, because PrAm is an exact model for the PAAm constitutional repeat unit (CRU). The longest time scale dynamics observed for both aqueous PAAm and PrAm solutions occur in the 4-10 ps range. Over the range of concentrations from 0 to 40 wt %, the picosecond reorientation time constants for the aqueous PAAm and PrAm solutions scale linearly with the solution concentration, despite the fact that the solution shear viscosities vary exponentially from 1 to 264 cP. For a given value of solution concentration in weight percent, constant ratios of measured reorientation time constants for PAAm to PrAm are obtained. This ratio of PAAm to PrAm reorientation time constants is equal to the ratio of the volume for the PAAm constitutional repeat unit (-CH2CHCONH2-) to the molecular volume of PrAm. For these reasons, we assign the polymer reorientation dynamics to motions of the entire constitutional repeat unit, not only side group motions. Simple molecular dynamics simulations of H[-CH2CH(CONH2)-]7H in a periodic box with 180 water molecules support this assignment. Amide-amide and amide-water hydrogen-bonding interactions lead to strongly oscillatory femtosecond dynamics in the Kerr transients, peaking at 80, 410, and 750 fs.

UR - http://www.scopus.com/inward/record.url?scp=0035956565&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035956565&partnerID=8YFLogxK

U2 - 10.1021/ja010290z

DO - 10.1021/ja010290z

M3 - Article

C2 - 11749546

AN - SCOPUS:0035956565

VL - 123

SP - 12877

EP - 12885

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 51

ER -