Use of spatiotemporal response information from sorption-based sensor arrays to identify and quantify the composition of analyte mixtures

Marc D. Woodka, Bruce S. Brunschwig, Nathan S. Lewis

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Linear sensor arrays made from small molecule/carbon black composite chemiresistors placed in a low-headspace volume chamber, with vapor delivered at low flow rates, allowed for the extraction of new chemical information that significantly increased the ability of the sensor arrays to identify vapor mixture components and to quantify their concentrations. Each sensor sorbed vapors from the gas stream and, thereby, as in gas chromatography, separated species having high vapor pressures from species having low vapor pressures. Instead of producing only equilibriumbased sensor responses that were representative of the thermodynamic equilibrium partitioning of analyte between each sensor and the initial vapor phase, the sensor responses varied depending on the position of the sensor in the chamber and the time since the beginning of the analyte exposure. The concomitant spatiotemporal (ST) sensor array response therefore provided information that was a function of time, as well as of the position of the sensor in the chamber. The responses to pure analytes and to multicomponent analyte mixtures comprised of hexane, decane, ethyl acetate, chlorobenzene, ethanol, and/or butanol were recorded along each of the sensor arrays. Use of a non-negative least-squares (NNLS) method for analysis of the ST data enabled the correct identification and quantification of the composition of two-, three-, four-, and five-component mixtures from arrays using only four chemically different sorbent films. In contrast, when traditional time- and position-independent sensor response information was used, these same mixtures could not be identified or quantified robustly. The work has also demonstrated that, for ST data, NNLS yielded significantly better results than analyses using extended disjoint principal components modeling. The ability to correctly identify and quantify constituent components of vapor mixtures through the use of such ST information significantly expands the capabilities of such broadly cross-reactive arrays of sensors.

Original languageEnglish
Pages (from-to)13232-13241
Number of pages10
JournalLangmuir
Volume23
Issue number26
DOIs
Publication statusPublished - Dec 18 2007

    Fingerprint

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Cite this