Using Three-Pulse Femtosecond Spectroscopy to Probe Ultrafast Triplet Energy Transfer in Zinc meso-Tetraarylporphyrin-Perylene-3,4-dicarboximide Dyads

Ryan T. Hayes, Christopher J. Walsh, Michael R Wasielewski

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

Linear arrays of zinc meso-tetraarylporphyrin (ZnP), perylene-3,4- dicarboximide (PMI), and either naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI) were synthesized and studied by ultrafast transient absorption spectroscopy. PMI was covalently linked in one of two orientations relative to ZnP. In one set of molecules, the 9 position of the perylene core is connected to the para position of a meso-phenyl in ZnP to give ZnP-PMI-N-X, where X = NI or PI is attached to the imide nitrogen atom of PMI. In the second set of compounds, the imide nitrogen atom of PMI is connected to the meso-phenyl in ZnP to give ZnP-N-PMI-X, where X = PI or H. Selective excitation of ZnP using 420 nm, 110 fs laser pulses in each molecule in toluene produces 1*ZnP, which intersystem crosses (ISC) to 3*ZnP with τ = 2.3 ns. For ZnP-PMI-N-X, triplet energy transfer (TET) from 3*ZnP to PMI is much faster than ISC, so that 3*ZnP is not observed by one-pump-one-probe transient absorption spectroscopy. Following its formation, the lowest excited triplet state of 3*PMI was excited with a 575 nm, 110 fs laser pulse to produce an upper excited triplet state, 3**PMI. In ZnP-PMI-N-X, subpicosecond TET from 3**PMI re-populates 3*ZnP, which subsequently undergoes TET back to PMI with a rate of (7 ps) -1. The same experiment carried out on ZnP-N-PMI-X reveals that the TET process 3*ZnP-N-PMI-X → ZnP- 3*N-PMI-X occurs with a rate of (55 ns) -1. The nearly 8000-fold larger TET rate from 3*ZnP to PMI in ZnP-PMI-N-X relative to that in ZnP-N-PMI-X is a consequence of the larger π-orbital coefficients at the 9 position in both the HOMO and LUMO of PMI relative to that on its imide nitrogen atom. This basic asymmetry allows optimization of energy and electron and/or hole transfer rates in large assemblies containing PMI for use in organic molecular electronics.

Original languageEnglish
Pages (from-to)3253-3260
Number of pages8
JournalJournal of Physical Chemistry A
Volume108
Issue number16
DOIs
Publication statusPublished - Apr 22 2004

Fingerprint

Perylene
Ultrashort pulses
Energy transfer
Zinc
Imides
zinc
energy transfer
Spectroscopy
imides
probes
nitrogen atoms
pulses
Nitrogen
spectroscopy
Absorption spectroscopy
Excited states
Atoms
atomic energy levels
Laser pulses
absorption spectroscopy

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Cite this

Using Three-Pulse Femtosecond Spectroscopy to Probe Ultrafast Triplet Energy Transfer in Zinc meso-Tetraarylporphyrin-Perylene-3,4-dicarboximide Dyads. / Hayes, Ryan T.; Walsh, Christopher J.; Wasielewski, Michael R.

In: Journal of Physical Chemistry A, Vol. 108, No. 16, 22.04.2004, p. 3253-3260.

Research output: Contribution to journalArticle

@article{b7cf5ab7c2b44ed6ae09b777f1051189,
title = "Using Three-Pulse Femtosecond Spectroscopy to Probe Ultrafast Triplet Energy Transfer in Zinc meso-Tetraarylporphyrin-Perylene-3,4-dicarboximide Dyads",
abstract = "Linear arrays of zinc meso-tetraarylporphyrin (ZnP), perylene-3,4- dicarboximide (PMI), and either naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI) were synthesized and studied by ultrafast transient absorption spectroscopy. PMI was covalently linked in one of two orientations relative to ZnP. In one set of molecules, the 9 position of the perylene core is connected to the para position of a meso-phenyl in ZnP to give ZnP-PMI-N-X, where X = NI or PI is attached to the imide nitrogen atom of PMI. In the second set of compounds, the imide nitrogen atom of PMI is connected to the meso-phenyl in ZnP to give ZnP-N-PMI-X, where X = PI or H. Selective excitation of ZnP using 420 nm, 110 fs laser pulses in each molecule in toluene produces 1*ZnP, which intersystem crosses (ISC) to 3*ZnP with τ = 2.3 ns. For ZnP-PMI-N-X, triplet energy transfer (TET) from 3*ZnP to PMI is much faster than ISC, so that 3*ZnP is not observed by one-pump-one-probe transient absorption spectroscopy. Following its formation, the lowest excited triplet state of 3*PMI was excited with a 575 nm, 110 fs laser pulse to produce an upper excited triplet state, 3**PMI. In ZnP-PMI-N-X, subpicosecond TET from 3**PMI re-populates 3*ZnP, which subsequently undergoes TET back to PMI with a rate of (7 ps) -1. The same experiment carried out on ZnP-N-PMI-X reveals that the TET process 3*ZnP-N-PMI-X → ZnP- 3*N-PMI-X occurs with a rate of (55 ns) -1. The nearly 8000-fold larger TET rate from 3*ZnP to PMI in ZnP-PMI-N-X relative to that in ZnP-N-PMI-X is a consequence of the larger π-orbital coefficients at the 9 position in both the HOMO and LUMO of PMI relative to that on its imide nitrogen atom. This basic asymmetry allows optimization of energy and electron and/or hole transfer rates in large assemblies containing PMI for use in organic molecular electronics.",
author = "Hayes, {Ryan T.} and Walsh, {Christopher J.} and Wasielewski, {Michael R}",
year = "2004",
month = "4",
day = "22",
doi = "10.1021/jp0360319",
language = "English",
volume = "108",
pages = "3253--3260",
journal = "Journal of Physical Chemistry A",
issn = "1089-5639",
publisher = "American Chemical Society",
number = "16",

}

TY - JOUR

T1 - Using Three-Pulse Femtosecond Spectroscopy to Probe Ultrafast Triplet Energy Transfer in Zinc meso-Tetraarylporphyrin-Perylene-3,4-dicarboximide Dyads

AU - Hayes, Ryan T.

AU - Walsh, Christopher J.

AU - Wasielewski, Michael R

PY - 2004/4/22

Y1 - 2004/4/22

N2 - Linear arrays of zinc meso-tetraarylporphyrin (ZnP), perylene-3,4- dicarboximide (PMI), and either naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI) were synthesized and studied by ultrafast transient absorption spectroscopy. PMI was covalently linked in one of two orientations relative to ZnP. In one set of molecules, the 9 position of the perylene core is connected to the para position of a meso-phenyl in ZnP to give ZnP-PMI-N-X, where X = NI or PI is attached to the imide nitrogen atom of PMI. In the second set of compounds, the imide nitrogen atom of PMI is connected to the meso-phenyl in ZnP to give ZnP-N-PMI-X, where X = PI or H. Selective excitation of ZnP using 420 nm, 110 fs laser pulses in each molecule in toluene produces 1*ZnP, which intersystem crosses (ISC) to 3*ZnP with τ = 2.3 ns. For ZnP-PMI-N-X, triplet energy transfer (TET) from 3*ZnP to PMI is much faster than ISC, so that 3*ZnP is not observed by one-pump-one-probe transient absorption spectroscopy. Following its formation, the lowest excited triplet state of 3*PMI was excited with a 575 nm, 110 fs laser pulse to produce an upper excited triplet state, 3**PMI. In ZnP-PMI-N-X, subpicosecond TET from 3**PMI re-populates 3*ZnP, which subsequently undergoes TET back to PMI with a rate of (7 ps) -1. The same experiment carried out on ZnP-N-PMI-X reveals that the TET process 3*ZnP-N-PMI-X → ZnP- 3*N-PMI-X occurs with a rate of (55 ns) -1. The nearly 8000-fold larger TET rate from 3*ZnP to PMI in ZnP-PMI-N-X relative to that in ZnP-N-PMI-X is a consequence of the larger π-orbital coefficients at the 9 position in both the HOMO and LUMO of PMI relative to that on its imide nitrogen atom. This basic asymmetry allows optimization of energy and electron and/or hole transfer rates in large assemblies containing PMI for use in organic molecular electronics.

AB - Linear arrays of zinc meso-tetraarylporphyrin (ZnP), perylene-3,4- dicarboximide (PMI), and either naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI) were synthesized and studied by ultrafast transient absorption spectroscopy. PMI was covalently linked in one of two orientations relative to ZnP. In one set of molecules, the 9 position of the perylene core is connected to the para position of a meso-phenyl in ZnP to give ZnP-PMI-N-X, where X = NI or PI is attached to the imide nitrogen atom of PMI. In the second set of compounds, the imide nitrogen atom of PMI is connected to the meso-phenyl in ZnP to give ZnP-N-PMI-X, where X = PI or H. Selective excitation of ZnP using 420 nm, 110 fs laser pulses in each molecule in toluene produces 1*ZnP, which intersystem crosses (ISC) to 3*ZnP with τ = 2.3 ns. For ZnP-PMI-N-X, triplet energy transfer (TET) from 3*ZnP to PMI is much faster than ISC, so that 3*ZnP is not observed by one-pump-one-probe transient absorption spectroscopy. Following its formation, the lowest excited triplet state of 3*PMI was excited with a 575 nm, 110 fs laser pulse to produce an upper excited triplet state, 3**PMI. In ZnP-PMI-N-X, subpicosecond TET from 3**PMI re-populates 3*ZnP, which subsequently undergoes TET back to PMI with a rate of (7 ps) -1. The same experiment carried out on ZnP-N-PMI-X reveals that the TET process 3*ZnP-N-PMI-X → ZnP- 3*N-PMI-X occurs with a rate of (55 ns) -1. The nearly 8000-fold larger TET rate from 3*ZnP to PMI in ZnP-PMI-N-X relative to that in ZnP-N-PMI-X is a consequence of the larger π-orbital coefficients at the 9 position in both the HOMO and LUMO of PMI relative to that on its imide nitrogen atom. This basic asymmetry allows optimization of energy and electron and/or hole transfer rates in large assemblies containing PMI for use in organic molecular electronics.

UR - http://www.scopus.com/inward/record.url?scp=2342455777&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2342455777&partnerID=8YFLogxK

U2 - 10.1021/jp0360319

DO - 10.1021/jp0360319

M3 - Article

VL - 108

SP - 3253

EP - 3260

JO - Journal of Physical Chemistry A

JF - Journal of Physical Chemistry A

SN - 1089-5639

IS - 16

ER -