Very large silacylic substituent effects on response in silole-based polymer transistors

Hui Huang, Jangdae Youn, Rocio Ponce Ortiz, Yan Zheng, Antonio Facchetti, Tobin J Marks

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

Understanding the interrelationships between molecular structure and organic thin film transistor performance is key to the realization of novel organic semiconductors achieving superior device characteristics. Herein we report the synthesis, characterization, and charge-transporting properties in organic field-effect transistors (OFETs) of dithieno silole-based oligomers and copolymers having silacycloalkyl substituents. Silacyclization of the alkyl substituents on the silole silicon atom reduces steric encumbrance, contracts solid state intermolecular π-π contacts, and enhances the charge-transport capacity of the oligomers. Oligomer 3,3′-dihexylsilylene-2,2′:5, 2′′:5′,2′′′:5′′, 2′′′′:5′′′,2′′′ ′′-sexithiophene (SM5) with two Si-n-hexyl substituents is not FET-active, while the mobilities of 3,3′-cyclopentanylsilylene-2,2′: 5,2′′:5′,2′′′:5′′, 2′′′′:5′′′,2′′′ ′′′-sexithiophene (SM4) and 3,3′-cyclobutysilylene-2, 2′:5,2′′:5′,2′′′:5′′, 2′′′′:5′′′,2′′′ ′′-sexithiophene (SM3) FETs are 2.6 × 10-4 and 3.4 × 10-4 cm2/(V s), respectively. Single crystal structural data and melting point derived intermolecular packing trends parallel these FET results. Copolymers P1-P4 based on the same dithienosilole cycloalkyl cores exhibit optimized hole mobilities of 2 × 10-5, 6 × 10-4, 3 × 10-4, and 2 × 10-3 cm2/V•s, respectively, lower than that of analogous silole-containing polymers with long Si-alkyl substituents, implying that the solubilizing and self-assembly functions of Si-alkyl substituents are important for optimizing the mobility. Interestingly, copolymer [poly{[N,N′-bis(2- octyl-dodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5′-(3, 3′-cyclopentanylsilylene-2,2′-bithiophene (P5) films are the most ordered and exhibit a good electron mobility of 4 × 10-3 cm2/V•s after thermal annealing. All of these OFETs exhibit good ambient-stability, which is attributed to their low-lying HOMOs (>0.2 eV lower than that of P3HT), a consequence of introducing silole cores into polythiophene backbones.

Original languageEnglish
Pages (from-to)2185-2200
Number of pages16
JournalChemistry of Materials
Volume23
Issue number8
DOIs
Publication statusPublished - Apr 26 2011

Fingerprint

Field effect transistors
Oligomers
Organic field effect transistors
Polymers
Transistors
Copolymers
Hole mobility
Semiconducting organic compounds
Electron mobility
Thin film transistors
Self assembly
Molecular structure
Melting point
Charge transfer
Silicon
Single crystals
Annealing
Atoms
silole
sexithiophene

Keywords

  • conjugated polymers
  • sexithiophenes
  • spiro siloles
  • transistors

ASJC Scopus subject areas

  • Materials Chemistry
  • Chemical Engineering(all)
  • Chemistry(all)

Cite this

Very large silacylic substituent effects on response in silole-based polymer transistors. / Huang, Hui; Youn, Jangdae; Ponce Ortiz, Rocio; Zheng, Yan; Facchetti, Antonio; Marks, Tobin J.

In: Chemistry of Materials, Vol. 23, No. 8, 26.04.2011, p. 2185-2200.

Research output: Contribution to journalArticle

Huang, Hui ; Youn, Jangdae ; Ponce Ortiz, Rocio ; Zheng, Yan ; Facchetti, Antonio ; Marks, Tobin J. / Very large silacylic substituent effects on response in silole-based polymer transistors. In: Chemistry of Materials. 2011 ; Vol. 23, No. 8. pp. 2185-2200.
@article{2c2a0a762c2448b0a9c6eaf1a76b97e7,
title = "Very large silacylic substituent effects on response in silole-based polymer transistors",
abstract = "Understanding the interrelationships between molecular structure and organic thin film transistor performance is key to the realization of novel organic semiconductors achieving superior device characteristics. Herein we report the synthesis, characterization, and charge-transporting properties in organic field-effect transistors (OFETs) of dithieno silole-based oligomers and copolymers having silacycloalkyl substituents. Silacyclization of the alkyl substituents on the silole silicon atom reduces steric encumbrance, contracts solid state intermolecular π-π contacts, and enhances the charge-transport capacity of the oligomers. Oligomer 3,3′-dihexylsilylene-2,2′:5, 2′′:5′,2′′′:5′′, 2′′′′:5′′′,2′′′ ′′-sexithiophene (SM5) with two Si-n-hexyl substituents is not FET-active, while the mobilities of 3,3′-cyclopentanylsilylene-2,2′: 5,2′′:5′,2′′′:5′′, 2′′′′:5′′′,2′′′ ′′′-sexithiophene (SM4) and 3,3′-cyclobutysilylene-2, 2′:5,2′′:5′,2′′′:5′′, 2′′′′:5′′′,2′′′ ′′-sexithiophene (SM3) FETs are 2.6 × 10-4 and 3.4 × 10-4 cm2/(V s), respectively. Single crystal structural data and melting point derived intermolecular packing trends parallel these FET results. Copolymers P1-P4 based on the same dithienosilole cycloalkyl cores exhibit optimized hole mobilities of 2 × 10-5, 6 × 10-4, 3 × 10-4, and 2 × 10-3 cm2/V•s, respectively, lower than that of analogous silole-containing polymers with long Si-alkyl substituents, implying that the solubilizing and self-assembly functions of Si-alkyl substituents are important for optimizing the mobility. Interestingly, copolymer [poly{[N,N′-bis(2- octyl-dodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5′-(3, 3′-cyclopentanylsilylene-2,2′-bithiophene (P5) films are the most ordered and exhibit a good electron mobility of 4 × 10-3 cm2/V•s after thermal annealing. All of these OFETs exhibit good ambient-stability, which is attributed to their low-lying HOMOs (>0.2 eV lower than that of P3HT), a consequence of introducing silole cores into polythiophene backbones.",
keywords = "conjugated polymers, sexithiophenes, spiro siloles, transistors",
author = "Hui Huang and Jangdae Youn and {Ponce Ortiz}, Rocio and Yan Zheng and Antonio Facchetti and Marks, {Tobin J}",
year = "2011",
month = "4",
day = "26",
doi = "10.1021/cm200009k",
language = "English",
volume = "23",
pages = "2185--2200",
journal = "Chemistry of Materials",
issn = "0897-4756",
publisher = "American Chemical Society",
number = "8",

}

TY - JOUR

T1 - Very large silacylic substituent effects on response in silole-based polymer transistors

AU - Huang, Hui

AU - Youn, Jangdae

AU - Ponce Ortiz, Rocio

AU - Zheng, Yan

AU - Facchetti, Antonio

AU - Marks, Tobin J

PY - 2011/4/26

Y1 - 2011/4/26

N2 - Understanding the interrelationships between molecular structure and organic thin film transistor performance is key to the realization of novel organic semiconductors achieving superior device characteristics. Herein we report the synthesis, characterization, and charge-transporting properties in organic field-effect transistors (OFETs) of dithieno silole-based oligomers and copolymers having silacycloalkyl substituents. Silacyclization of the alkyl substituents on the silole silicon atom reduces steric encumbrance, contracts solid state intermolecular π-π contacts, and enhances the charge-transport capacity of the oligomers. Oligomer 3,3′-dihexylsilylene-2,2′:5, 2′′:5′,2′′′:5′′, 2′′′′:5′′′,2′′′ ′′-sexithiophene (SM5) with two Si-n-hexyl substituents is not FET-active, while the mobilities of 3,3′-cyclopentanylsilylene-2,2′: 5,2′′:5′,2′′′:5′′, 2′′′′:5′′′,2′′′ ′′′-sexithiophene (SM4) and 3,3′-cyclobutysilylene-2, 2′:5,2′′:5′,2′′′:5′′, 2′′′′:5′′′,2′′′ ′′-sexithiophene (SM3) FETs are 2.6 × 10-4 and 3.4 × 10-4 cm2/(V s), respectively. Single crystal structural data and melting point derived intermolecular packing trends parallel these FET results. Copolymers P1-P4 based on the same dithienosilole cycloalkyl cores exhibit optimized hole mobilities of 2 × 10-5, 6 × 10-4, 3 × 10-4, and 2 × 10-3 cm2/V•s, respectively, lower than that of analogous silole-containing polymers with long Si-alkyl substituents, implying that the solubilizing and self-assembly functions of Si-alkyl substituents are important for optimizing the mobility. Interestingly, copolymer [poly{[N,N′-bis(2- octyl-dodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5′-(3, 3′-cyclopentanylsilylene-2,2′-bithiophene (P5) films are the most ordered and exhibit a good electron mobility of 4 × 10-3 cm2/V•s after thermal annealing. All of these OFETs exhibit good ambient-stability, which is attributed to their low-lying HOMOs (>0.2 eV lower than that of P3HT), a consequence of introducing silole cores into polythiophene backbones.

AB - Understanding the interrelationships between molecular structure and organic thin film transistor performance is key to the realization of novel organic semiconductors achieving superior device characteristics. Herein we report the synthesis, characterization, and charge-transporting properties in organic field-effect transistors (OFETs) of dithieno silole-based oligomers and copolymers having silacycloalkyl substituents. Silacyclization of the alkyl substituents on the silole silicon atom reduces steric encumbrance, contracts solid state intermolecular π-π contacts, and enhances the charge-transport capacity of the oligomers. Oligomer 3,3′-dihexylsilylene-2,2′:5, 2′′:5′,2′′′:5′′, 2′′′′:5′′′,2′′′ ′′-sexithiophene (SM5) with two Si-n-hexyl substituents is not FET-active, while the mobilities of 3,3′-cyclopentanylsilylene-2,2′: 5,2′′:5′,2′′′:5′′, 2′′′′:5′′′,2′′′ ′′′-sexithiophene (SM4) and 3,3′-cyclobutysilylene-2, 2′:5,2′′:5′,2′′′:5′′, 2′′′′:5′′′,2′′′ ′′-sexithiophene (SM3) FETs are 2.6 × 10-4 and 3.4 × 10-4 cm2/(V s), respectively. Single crystal structural data and melting point derived intermolecular packing trends parallel these FET results. Copolymers P1-P4 based on the same dithienosilole cycloalkyl cores exhibit optimized hole mobilities of 2 × 10-5, 6 × 10-4, 3 × 10-4, and 2 × 10-3 cm2/V•s, respectively, lower than that of analogous silole-containing polymers with long Si-alkyl substituents, implying that the solubilizing and self-assembly functions of Si-alkyl substituents are important for optimizing the mobility. Interestingly, copolymer [poly{[N,N′-bis(2- octyl-dodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5′-(3, 3′-cyclopentanylsilylene-2,2′-bithiophene (P5) films are the most ordered and exhibit a good electron mobility of 4 × 10-3 cm2/V•s after thermal annealing. All of these OFETs exhibit good ambient-stability, which is attributed to their low-lying HOMOs (>0.2 eV lower than that of P3HT), a consequence of introducing silole cores into polythiophene backbones.

KW - conjugated polymers

KW - sexithiophenes

KW - spiro siloles

KW - transistors

UR - http://www.scopus.com/inward/record.url?scp=79955063419&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79955063419&partnerID=8YFLogxK

U2 - 10.1021/cm200009k

DO - 10.1021/cm200009k

M3 - Article

AN - SCOPUS:79955063419

VL - 23

SP - 2185

EP - 2200

JO - Chemistry of Materials

JF - Chemistry of Materials

SN - 0897-4756

IS - 8

ER -