Abstract
In order to calculate the transition probabilities (or cross sections) for reactive collisions, such as A + BC(ν, j)→ AB(ν′, j) + C, using the quasi-classical trajectory method, one quantizes the internal energy of the reagents and in addition adopts some algorithm for calculating the internal quantum numbers of the products. A serious consequence of this procedure is that the quasi-classical results do not obey microscopic reversibility. It is shown that for the collinear F + H2(ν = 0) → FH(ν = 2, 3)+ H reaction (and its D2 counterpart), the quasi-classical trajectory probabilities for the reverse reaction not only differ substantially from the forward ones but in general are in much better agreement with accurate quantum calculations. A similar situation was found for the collinear H + H2(0) → H2(1) + H reaction. We suggest that in doing quasi-classical calculations, the reverse of the process of interest should also be considered. Comparison of forward and reverse quasi-classical collinear calculations with accurate collinear quantum results could give an indication of whether forward or reverse calculations should be used for the three-dimensional case.
Original language | English |
---|---|
Pages (from-to) | 378-380 |
Number of pages | 3 |
Journal | Chemical Physics Letters |
Volume | 24 |
Issue number | 3 |
DOIs | |
Publication status | Published - Feb 1 1974 |
ASJC Scopus subject areas
- Physical and Theoretical Chemistry
- Spectroscopy
- Condensed Matter Physics
- Atomic and Molecular Physics, and Optics
- Surfaces and Interfaces